佳礼资讯网

 找回密码
 注册

ADVERTISEMENT

查看: 1797|回复: 5

logic和boolean algebra 的题目

[复制链接]
发表于 1-3-2012 11:05 PM | 显示全部楼层 |阅读模式
1 Consider the following argument.
If Abu likes to drive to work or his father’s car is old, then he will buy a new car.
Abu does not buy a new car or he takes a train to work.
Abu did not take a train to work.
Therefore, Abu does not like to drive to work.
(a) Rewrite the argument using statement variables and connectives. [2 marks]
(b) Test the argument for validity. [5 marks]

2 Let set B with binary operations ∨ and ∧ be a Boolean algebra. Show that, for all x, y and z in B,
(X'∧Y'∧Z')∨(X'∧Y'∧Z)∨(X∧Y'∧Z)≡Y' [5 marks]
回复

使用道具 举报


ADVERTISEMENT

发表于 2-3-2012 01:58 AM | 显示全部楼层
1 Consider the following argument.
If Abu likes to drive to work or his father’s car is old, then  ...
oceanheng 发表于 1-3-2012 11:05 PM



    (1)(a) p=Abu likes to drive to work

          q=Abu father’s car is old

           r=Abu will buy a new car

           s=Abu takes a train to work


          (p v q) → r

          ~r v s

          ~s

          ---------------

     ∴ ~p


     (b)用rule of inference, modus tollens, law of syllogism, simplification 就可以prove到了


(2)查一下题目有没有错误。

回复

使用道具 举报

发表于 2-3-2012 02:12 AM | 显示全部楼层
2 Let set B with binary operations ∨ and ∧ be a Boolean algebra. Show that, for all x, y and z in B,
(X'∧Y'∧Z')∨(X'∧Y'∧Z)∨(X∧Y'∧Z)≡Y' [5 marks]
oceanheng 发表于 1-3-2012 11:05 PM



    题目是不是少了这个?

(X'∧Y'∧Z')∨(X'∧Y'∧Z)∨(X∧Y'∧Z')∨(X∧Y'∧Z)≡Y'
回复

使用道具 举报

 楼主| 发表于 2-3-2012 08:33 PM | 显示全部楼层
回复 3# Allmaths
是是~copy error
回复

使用道具 举报

发表于 2-3-2012 11:02 PM | 显示全部楼层
回复  Allmaths
是是~copy error
oceanheng 发表于 2-3-2012 08:33 PM



    (X'∧Y'∧Z')∨(X'∧Y'∧Z)(X∧Y'∧Z') ∨(X∧Y'∧Z)
≡[(X'∧Y')∧(Z'∨Z)](X∧Y'∧Z') ∨(X∧Y'∧Z)
≡[(X'∧Y')∧E](X∧Y'∧Z') ∨(X∧Y'∧Z)
≡(X'∧Y')(X∧Y'∧Z') ∨(X∧Y'∧Z)
≡(X'∧Y')[(X∧Y')∧(Z'∨Z)]
≡(X'∧Y')[(X∧Y')∧E]
≡(X'∧Y')(X∧Y')
≡Y'∧(XX')
≡Y'∧E
≡Y'
回复

使用道具 举报

 楼主| 发表于 22-3-2012 09:19 PM | 显示全部楼层
回复 5# Allmaths


   proove 的是这样对吗?~r v s
~s
------------------
∴~r


(p v q) --> r
~ r
---------------------
∴~(p v q)


~p ^ ~q
∴~p
回复

使用道具 举报

Follow Us
您需要登录后才可以回帖 登录 | 注册

本版积分规则

 

ADVERTISEMENT



ADVERTISEMENT



ADVERTISEMENT

ADVERTISEMENT


版权所有 © 1996-2023 Cari Internet Sdn Bhd (483575-W)|IPSERVERONE 提供云主机|广告刊登|关于我们|私隐权|免控|投诉|联络|脸书|佳礼资讯网

GMT+8, 12-11-2024 11:26 AM , Processed in 0.129984 second(s), 24 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表