佳礼资讯网

 找回密码
 注册

ADVERTISEMENT

查看: 1596|回复: 9

Third hardest material in the world AlMgB14

[复制链接]
发表于 24-2-2009 10:49 AM | 显示全部楼层 |阅读模式


回复

使用道具 举报


ADVERTISEMENT

发表于 24-2-2009 10:56 AM | 显示全部楼层
只知道最硬是钻石,第二硬的就不知道是什么了……
回复

使用道具 举报

 楼主| 发表于 24-2-2009 11:02 AM | 显示全部楼层
原帖由 EasyWong 于 24-2-2009 10:56 AM 发表
只知道最硬是钻石,第二硬的就不知道是什么了……

第二硬是cubic boron nitride。
回复

使用道具 举报

发表于 25-2-2009 05:59 PM | 显示全部楼层
原帖由 弹煮 于 24-2-2009 11:02 AM 发表

第二硬是cubic boron nitride。


那钨金(TUNGSTEN)排第几呢?
回复

使用道具 举报

 楼主| 发表于 25-2-2009 07:48 PM | 显示全部楼层
Scientists Discover Material Harder Than Diamond                                                        February 12th, 2009                                                         By Lisa Zyga                                                         in Physics / Materials                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Adiamond ring. Scientists have calculated that wurtzite boron nitrideand lonsdaleite (hexagonal diamond) both have greater indentationstrengths than diamond. Source: English Wikipedia.
                                                                                                                                        (PhysOrg.com)-- Currently, diamond is regarded to be the hardest known material inthe world. But by considering large compressive pressures underindenters, scientists have calculated that a material called wurtziteboron nitride (w-BN) has a greater indentation strength than diamond.The scientists also calculated that another material, lonsdaleite (alsocalled hexagonal diamond, since it’s made of carbon and is similar todiamond), is even stronger than w-BN and 58 percent stronger thandiamond, setting a new record.
                                                                                                                                                                                                                                      
Thisanalysis marks the first case where a material exceeds diamond instrength under the same loading conditions, explain the study’sauthors, who are from Shanghai Jiao Tong University and the Universityof Nevada, Las Vegas. The study is published in a recent issue of Physical Review Letters.
“The new finding from our results is that large normal compressivepressures under indenters can transform certain materials (such as w-BNand lonsdaleite) into new superhard structures that are harder thandiamond,” coauthor Changfeng Chen from the University of Nevada, LasVegas, told PhysOrg.com. “This is a new mechanism that can be used to design new superhard materials.”

The scientists explain that the superior strength of w-BN andlonsdaleite is due to the materials’ structural reaction tocompression. Normal compressive pressures under indenters cause thematerials to undergo a structural phase transformation into strongerstructures, conserving volume by flipping their atomic bonds. Thescientists explain that w-BN and lonsdaleite have subtle differences inthe directional arrangements of their bonds compared with diamond,which is responsible for their unique structural reaction.
Under large compressive pressures, w-BN increases its strength by78 percent compared with its strength before bond-flipping. Thescientists calculated that w-BN reaches an indentation strength of 114GPa (billions of pascals), well beyond diamond’s 97 GPa under the sameindentation conditions. In the case of lonsdaleite, the samecompression mechanism also caused bond-flipping, yielding anindentation strength of 152 GPa, which is 58 percent higher than thecorresponding value of diamond.
“Lonsdaleite is even stronger than w-BN because lonsdaleite is madeof carbon atoms and w-BN consists of boron and nitrogen atoms,” Chenexplained. “The carbon-carbon bonds in lonsdaleite are stronger thanboron-nitrogen bonds in w-BN. This is also why diamond (with a cubicstructure) is stronger than cubic boron nitride (c-BN).”
                                                                                                    


Until recently, normal compressive pressures under indenters havenot been included in the calculations of ideal shear strengths ofcrystals from first principles, but latest developments have enabledresearchers to consider their effects, resulting in surprisingdiscoveries like the one shown here. Still, experimenting with w-BN andlonsdaleite will be challenging, since both materials are difficult tosynthesize in large quantities. However, another recent study has takena promising approach to producing nanocomposites of w-BN and c-BN,which may also provide a way to synthesize nanocomposites containinglonsdaleite and diamond.
In addition, by showing the underlying atomistic mechanism that canstrengthen some materials, this work may provide new approaches fordesigning superhard materials. As Chen explained, superhard materialsthat exhibit other superior properties are highly desirable forapplications in many fields of science and technology.
“High hardness is only one important characteristic of superhardmaterials,” Chen said. “Thermal stability is another key factor sincemany superhard materials need to withstand extreme high-temperatureenvironments as cutting and drilling tools and as wear, fatigue andcorrosion resistant coatings in applications ranging from micro- andnano-electronics to space technology. For all carbon-based superhardmaterials, including diamond, their carbon atoms will react with oxygenatoms at high temperatures (at around 600°C) and become unstable. Sodesigning new, thermally more stable superhard materials is crucial forhigh-temperature applications. Moreover, since most common superhardmaterials, such as diamond and cubic-BN, are semiconductors, it ishighly desirable to design superhard materials that are conductors orsuperconductors. In addition, superhard magnetic materials are keycomponents in various recording devices.”

More information: Pan, Zicheng; Sun, Hong; Zhang, Yi; andChen, Changfeng. “Harder than Diamond: Superior Indentation Strength ofWurtzite BN and Lonsdaleite.” Physical Review Letters 102, 055503 (2009).

Copyright 2009 PhysOrg.com.
All rights reserved. This material may not be published, broadcast,rewritten or redistributed in whole or part without the express writtenpermission of PhysOrg.com
回复

使用道具 举报

发表于 3-3-2009 02:58 PM | 显示全部楼层

回复 1# 弹煮 的帖子

好久没有看到 弹煮了
还有你得article很小下
很难看下
回复

使用道具 举报

Follow Us
 楼主| 发表于 5-3-2009 02:21 AM | 显示全部楼层

回复 6# 不帅 的帖子

抱歉噢,那时候可能用错网站来upload,所以解像度自动降低了。
那本journal不懂放哪里了,找不回
回复

使用道具 举报

发表于 8-3-2009 05:58 PM | 显示全部楼层
你还真的不会upload
回复

使用道具 举报


ADVERTISEMENT

发表于 21-3-2009 03:37 PM | 显示全部楼层
哦哦。。。增長見識了。。。謝謝分享。。。
回复

使用道具 举报

发表于 16-4-2009 06:33 PM | 显示全部楼层
那么Fulleren C-60/buckyballs算是排第几硬?
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

 

ADVERTISEMENT



ADVERTISEMENT



ADVERTISEMENT

ADVERTISEMENT


版权所有 © 1996-2023 Cari Internet Sdn Bhd (483575-W)|IPSERVERONE 提供云主机|广告刊登|关于我们|私隐权|免控|投诉|联络|脸书|佳礼资讯网

GMT+8, 20-4-2024 07:52 PM , Processed in 0.070243 second(s), 23 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表