佳礼资讯网

 找回密码
 注册

ADVERTISEMENT

楼主: pipi

问题:不等式

[复制链接]
 楼主| 发表于 11-6-2004 05:05 PM | 显示全部楼层
sinchee 于 11-6-2004 04:22 PM  说 :
  (x/(y+z)) + (y/(x+z)) + (z/(x+y))
= (x+y+z)/(y+z) - 1 + (x+y+z)/(x+z) - 1 + (x+y+z)/(x+y) -1
= (x+y+z) [1/(y+z) + 1/(x+z) + 1/(x+y)] - 3

设 (y+z)=a, (x+z)=b, (x+y)=c, 则 (x+y+z)=1/2 ( ...


短短两三步解了它。赞!
回复

使用道具 举报


ADVERTISEMENT

 楼主| 发表于 11-6-2004 05:10 PM | 显示全部楼层

还是不等式:

当然罗,我不会让你们闲下来。。。
又来玩玩吧!

若a,b,c为正数, a+b+c=1,求证:
  (i)   (1/a - 1)(1/b - 1)(1/c - 1)≥ 8    (已解)
(解答请看  http://chinese.cari.com.my/myfor ... =131842&fpage=1
  (ii)  (1/a + 1)(1/b + 1)(1/c + 1)≥ 64            
  (iii)  a^2 + b^2 + c^2 ≥ 1/3                        
  (iv)   a^(-2) + b^(-2) + c^(-2) ≥ 27

[ Last edited by pipi on 11-6-2004 at 05:13 PM ]
回复

使用道具 举报

sinchee 该用户已被删除
发表于 11-6-2004 08:16 PM | 显示全部楼层
我也有题目:
求证:(i) 1 + 1/(1·2) + 1/(1·2·3) + ... + 1/(1·2...·n) < 2
    (ii) 1/2^2 + 1/3^2 + ... + 1/n^2 < (n-1)/n   [n>=2]
   (iii) [1·3·5...(2n-1)]/[2·4·6...(2n)] > sqrt(n+1) / (2n+1)

[ Last edited by sinchee on 12-6-2004 at 09:59 AM ]
回复

使用道具 举报

sinchee 该用户已被删除
发表于 12-6-2004 09:42 AM | 显示全部楼层
pipi 于 11-6-2004 05:10 PM  说 :
(iii)  a^2 + b^2 + c^2 ≥ 1/3            


因为  
a^2 + b^2 >= 2ab
b^2 + c^2 >= 2bc
a^2 + c^2 >= 2ac
所以
2 (a^2 + b^2 + c^2) >= 2ab + 2bc + 2ac
3 (a^2 + b^2 + c^2) >= (a^2 + b^2 + c^2) + 2ab + 2bc + 2ac
3 (a^2 + b^2 + c^2) >= (a + b + c)^2 = 1
  (a^2 + b^2 + c^2) >= 1/3


[ Last edited by sinchee on 12-6-2004 at 09:45 AM ]
回复

使用道具 举报

 楼主| 发表于 12-6-2004 10:13 AM | 显示全部楼层
sinchee 于 11-6-2004 08:16 PM  说 :
求证:(i) 1 + 1/(1·2) + 1/(1·2·3) + ... + 1/(1·2...·n) < 2


我想我"骗到了"这题的解答!!
你们也试试吧。。。

不过,我用 excel 算到这题左式式子会趋近于 1.718281828。
各位网友,有没有发现到这个号码有点熟??
怀疑当 n 趋近于无限时,左式会趋近于 e-1 ,同意吗?
怎样证明??暂时不知道。


p/s: 这题目有点像 jwyong 在 sinchee 的"关于无限"提过的,请看
http://chinese.cari.com.my/myfor ... ghlight=&page=2

[ Last edited by pipi on 12-6-2004 at 11:31 AM ]
回复

使用道具 举报

 楼主| 发表于 12-6-2004 11:47 AM | 显示全部楼层
pipi 于 2-6-2004 10:31 AM  说 :
若 x, y, z > 0
求证:
(x/(y+z)) + (y/(x+z)) + (z/(x+y)) >= 3/2


这一题昨天已被 sinchee 解决了。
从她的做法,我发现这个问题又可以一般化

现在我们将只是考虑正数
我们不是有
a/b + b/a ≥ 2 吗?

接着,上面的问题是
a/((b+c) + b/(c+a) + c/(a+b) ≥ 3/2

所以,我们是不是可以整理它成为以下的问题。。。

回复

使用道具 举报

Follow Us
 楼主| 发表于 12-6-2004 12:26 PM | 显示全部楼层
pipi 于 12-6-2004 10:13 AM  说 :
我想我"骗到了"这题的解答!!
你们也试试吧。。。

不过,我用 excel 算到这题左式式子会趋近于 1.718281828。
各位网友,有没有发现到这个号码有点熟??
我怀疑当 n 趋近于无限时,左式会趋近于 e-1 ,同意吗?
怎样证明??暂时不知道。


我真是笨蛋!!
n 趋近于无限时,
1 + 1/(1·2) + 1/(1·2·3) + ... + 1/(1·2...·n)
当然是趋近于 e-1。

因为
e = summation (1/(r!)),running from r=0 until infinity.
  = 1/0! + 1/1! + 1/2! + 1/3! +...
  =  1   +  1 + 1/(1·2) + 1/(1·2·3) + ... + 1/(1·2...·n)
回复

使用道具 举报

发表于 13-6-2004 01:15 AM | 显示全部楼层
pipi 于 2-6-2004 10:31  说 :
若 x, y, z > 0
求证:
(x/(y+z)) + (y/(x+z)) + (z/(x+y)) >= 3/2



2(x+y+z)/3 >= 3/{1/(x+y)+1/(x+z)+1/(y+z)}
(x+y+z){1/(x+y)+1/(x+z)+1/(y+z)} >= 9/2
(x/(y+z)) + (y/(x+z)) + (z/(x+y)) +3 >= 9/2
(x/(y+z)) + (y/(x+z)) + (z/(x+y)) >=3/2
回复

使用道具 举报


ADVERTISEMENT

 楼主| 发表于 13-6-2004 03:13 PM | 显示全部楼层
梵谷 于 13-6-2004 01:15 AM  说 :
2(x+y+z)/3 >= 3/{1/(x+y)+1/(x+z)+1/(y+z)}
(x+y+z){1/(x+y)+1/(x+z)+1/(y+z)} >= 9/2
(x/(y+z)) + (y/(x+z)) + (z/(x+y)) +3 >= 9/2
(x/(y+z)) + (y/(x+z)) + (z/(x+y)) >=3/2

能不能解释为什么
2(x+y+z)/3 >= 3/{1/(x+y)+1/(x+z)+1/(y+z)}
谢谢。
回复

使用道具 举报

发表于 14-6-2004 02:28 PM | 显示全部楼层
pipi 于 13-6-2004 15:13  说 :

能不能解释为什么
2(x+y+z)/3 >= 3/{1/(x+y)+1/(x+z)+1/(y+z)}
谢谢。


不好意思,懒惰打字,skip掉一些步骤.
用harmonic-arithnmetical mean,得到
{(x+y)+(x+z)+(y+z)}/3 >= 3/{1/(x+y)+1/(x+z)+1/(y+z)}
(2x+2y+2z)/3 >= 3/{1/(x+y)+1/(x+z)+1/(y+z)}
2(x+y+z)/3 >= 3/{1/(x+y)+1/(x+z)+1/(y+z)}

[ Last edited by 梵谷 on 14-6-2004 at 05:23 PM ]
回复

使用道具 举报

 楼主| 发表于 15-6-2004 10:14 AM | 显示全部楼层
梵谷 于 14-6-2004 02:28 PM  说 :
不好意思,懒惰打字,skip掉一些步骤.
harmonic-arithnmetical mean,得到
{(x+y)+(x+z)+(y+z)}/3 >= 3/{1/(x+y)+1/(x+z)+1/(y+z)}
(2x+2y+2z)/3 >= 3/{1/(x+y)+1/(x+z)+1/(y+z)}
2(x+y+z)/3 >=  ...


我忽略了这个东东。。。真是不好意思。。。
er...它好像叫做 Arithmetic-Harmonic Mean吧!
有兴趣的朋友可游览:
http://mathworld.wolfram.com/ArithmeticMean.html

p/s: 一般而言,我们有
       A ≥ G ≥ H
其中 A 代表 Arithmetic mean
     G 代表 Geometry mean
     H 代表 Hamonic mean
回复

使用道具 举报

 楼主| 发表于 23-6-2004 03:21 PM | 显示全部楼层
我又来了


[ Last edited by pipi on 23-6-2004 at 03:23 PM ]
回复

使用道具 举报

发表于 23-6-2004 04:48 PM | 显示全部楼层
铁蛋来解这题。

5.(i) S = 1 + 1/(1·2) + 1/(1·2·3) + ... + 1/(1·2...·n) < 2

1/(1*2*3) < 1/(1*2*2) = 1/2^2

1/(1*2*3*4) < 1/(1*2*2*2) = 1/2^3

...

1/(1*2*...*n) < 1/2^(n-1)

所以:
S < 1 + 1/2 + 1/2^2 + ... + 1/2^(n-1)
  = 2( 1 - (1/2)^n ) < 2

[ Last edited by 铁蛋 on 23-6-2004 at 05:05 PM ]
回复

使用道具 举报

发表于 23-6-2004 05:01 PM | 显示全部楼层
呵呵,这个也可以。。。

5.(ii) S = 1/2^2 + 1/3^2 + ... + 1/n^2 < (n-1)/n   [n>=2]  

1/2^2 < 1/(2*1)

1/3^2 < 1/(3*2)

1/4^2 < 1/(4*3)

...

1/n^2 < 1/(n(n-1))

所以,
S < [1/(2*1)] + [1/(3*2)] + [1/(4*3)] + ... + [1/(n(n-1))]
  = [1 - 1/2] + [1/2 - 1/3] + [1/3 - 1/4] + ... + [1/(n-1) - 1/n]
  = 1 - 1/n = (n-1) / n
证毕.

[ Last edited by 铁蛋 on 23-6-2004 at 05:06 PM ]
回复

使用道具 举报

 楼主| 发表于 9-7-2004 10:26 AM | 显示全部楼层
有个朋友送来第六题的"证明",他用的是完全不一样方法(与想法)。
不过,看起来他的论点有些"吓人"。
(我检查过,他是对的。。。)
(他是高手一名。。。厉害!厉害!)
回复

使用道具 举报

发表于 9-7-2004 10:34 AM | 显示全部楼层
小弟觉得这里的不等式问题都显示了一些有用的数学技巧和思考方式。。。待有空挡想整理成 PDF file,放在资料库。
回复

使用道具 举报


ADVERTISEMENT

sinchee 该用户已被删除
发表于 14-7-2004 06:40 PM | 显示全部楼层
pipi 于 26-3-2004 02:45 PM  说 :
整理整理一下问过的问题:

4.若a,b,c为正数, a+b+c=1,求证:
  (i)   (1/a - 1)(1/b - 1)(1/c - 1)≥ 8             (已解)
  (ii)  (1/a + 1)(1/b + 1)(1/c + 1)≥ 64            (待解)
  (iii)  a^2 + b^2 + c^2 ≥ 1/3                     (已解)
  (iv)   a^(-2) + b^(-2) + c^(-2) ≥ 27             (待解)


从 (i),
     (1/a - 1)(1/b - 1)(1/c - 1) >= 8
     1/abc - (1/ab + 1/bc + 1/ac) + 1/a + 1/b + 1/c - 1 >= 8
    1/a + 1/b + 1/c >= 9

且 abc <= [(a+b+c)/3]^3
        = 1/27
1/abc >= 27

4.(ii),
      (1/a + 1)(1/b + 1)(1/c + 1)
    = 2/abc + 1/a + 1/b + 1/c +1
   >= 2(27) + 9 + 1
    = 64

4.(iv),
[跟4.(iii)同出一辙]
如果  x=a^(-1), y=b^(-1), z=c^(-1)
x + y + z = 1/a + 1/b + 1/c >= 9


x^2 + y^2 >= 2xy
y^2 + z^2 >= 2yz
x^2 + z^2 >= 2xz
所以
2 (x^2 + y^2 + z^2) >= 2xy + 2yz + 2xz
3 (x^2 + y^2 + z^2) >= (x^2 + y^2 + z^2) + 2xy + 2yz + 2xz
3 (x^2 + y^2 + z^2) >= (x + y + z)^2 >= 9^2
  (x^2 + y^2 + z^2) >= 27

即  a^(-2) + b^(-2) + c^(-2) >= 27

[ Last edited by sinchee on 14-7-2004 at 07:00 PM ]
回复

使用道具 举报

 楼主| 发表于 15-7-2004 01:06 PM | 显示全部楼层
欢迎回来,sinchee...
(看来大家最近都很忙。。。)
迟些我会再贴一些好玩的不等式。。。
各位网友,你们也可找一些好玩的不等式,来讨论讨论。。。
回复

使用道具 举报

 楼主| 发表于 16-7-2004 05:31 PM | 显示全部楼层
来一题简单的不等式。欢迎大家来试试:

若 a^2+b^2=1,  c^2+d^2=1
求证: ac + bd <= 1 , ad + bc <=1

[ Last edited by pipi on 16-7-2004 at 06:54 PM ]
回复

使用道具 举报

sinchee 该用户已被删除
发表于 16-7-2004 05:55 PM | 显示全部楼层
pipi 于 23-6-2004 03:21 PM  说 :
我又来了


[ Last edited by pipi on 23-6-2004 at 03:23 PM ]



我又来玩啦!!!!   

我们有         a^2 + b^2 >= 2ab,  [ a,b,c>0 ]
所以  (a^2 + b^2)(a + b) >= 2ab(a + b)
               a^3 + b^3 >= (a^2)b + a(b^2)
         a^3 + b^3 + abc >= (a^2)b + a(b^2) + abc
         a^3 + b^3 + abc >= ab(a+b+c)

同理,得
b^3 + c^3 + abc >= bc(a+b+c)
a^3 + c^3 + abc >= ac(a+b+c)

因此,
   1/(a^3 + b^3 + abc) + 1/( b^3 + c^3 + abc) + 1/(a^3 + c^3 + abc)
<= 1/[ab(a+b+c)] + 1/[bc(a+b+c)] + 1/[ac(a+b+c)]
=  1/abc

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

 

ADVERTISEMENT



ADVERTISEMENT



ADVERTISEMENT

ADVERTISEMENT


版权所有 © 1996-2023 Cari Internet Sdn Bhd (483575-W)|IPSERVERONE 提供云主机|广告刊登|关于我们|私隐权|免控|投诉|联络|脸书|佳礼资讯网

GMT+8, 27-4-2024 04:40 AM , Processed in 0.059851 second(s), 24 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表