|
发表于 16-8-2010 01:40 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 16-8-2010 08:09 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 16-8-2010 10:09 PM
|
显示全部楼层
回复 1542# walrein_lim88
第八行不应该cancel掉n, 这样就少掉了一个solution.
可以解释part (b) 吗? 不是很明白 |
|
|
|
|
|
|
|
发表于 16-8-2010 10:29 PM
|
显示全部楼层
回复 walrein_lim88
第八行不应该cancel掉n, 这样就少掉了一个solution.
可以解释part (b) 吗? 不是很 ...
whyyie 发表于 16-8-2010 10:09 PM ![](http://cforum2.cari.com.my/images/common/back.gif)
以我看法,n 是不可能等于0..所以删除掉也不会影响final answer的..最终final answer拿到0也是要reject掉的.. |
|
|
|
|
|
|
|
发表于 16-8-2010 10:47 PM
|
显示全部楼层
回复 1544# Allmaths
When n =0,
a=0; d=0
=> arithmetic progression ![](static/image/smiley/default/icon_redface.gif)
错了? |
|
|
|
|
|
|
|
发表于 16-8-2010 10:54 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 16-8-2010 11:17 PM
|
显示全部楼层
回复 1546# Allmaths
还真的打错了, 没去注意
![](http://img18.imageshack.us/img18/3930/24109574.jpg) |
|
|
|
|
|
|
|
发表于 16-8-2010 11:52 PM
|
显示全部楼层
回复 Allmaths
还真的打错了, 没去注意
whyyie 发表于 16-8-2010 11:17 PM ![](http://cforum1.cari.com.my/images/common/back.gif)
![](http://img840.imageshack.us/img840/4747/sigma5.jpg) |
|
|
|
|
|
|
|
发表于 17-8-2010 07:57 AM
|
显示全部楼层
哈哈。。看来这里真的是靠allmaths了。。加油!!!![](static/image/smiley/default/shy.gif) |
|
|
|
|
|
|
|
发表于 17-8-2010 02:24 PM
|
显示全部楼层
哈哈。。看来这里真的是靠allmaths了。。加油!!!
walrein_lim88 发表于 17-8-2010 07:57 AM ![](http://cforum.cari.com.my/images/common/back.gif)
不敢..这题目是STPM PAST YEAR...所以才会做..![](static/image/smiley/default/tongue.gif) |
|
|
|
|
|
|
|
发表于 17-8-2010 04:41 PM
|
显示全部楼层
回复 1539# peaceboy
![](http://i587.photobucket.com/albums/ss311/yongeow/untitled.jpg)
这个是答案
anyway 谢谢 |
|
|
|
|
|
|
|
![](static/image/common/ico_lz.png)
楼主 |
发表于 17-8-2010 08:31 PM
|
显示全部楼层
1.find the value of t such that 2y=x+t is a tangent to the ellipse x^2+16y^2=16
2. A straight line 2y=x+1 intersects the hyperbola 4x^2-9y^2 = 36 at 2 points P and Q . Find the coordinates of the midpoint of PQ .
3.Find the equation of the tangent to the hyperbola x^2-2y^2=1 which is paralllel to the line 4y=3x |
|
|
|
|
|
|
|
发表于 17-8-2010 09:07 PM
|
显示全部楼层
回复 1552# 白羊座aries
![](http://i587.photobucket.com/albums/ss311/yongeow/untitled-1.jpg)
应该是这样...
不过感觉好像有点错 |
|
|
|
|
|
|
|
发表于 17-8-2010 09:36 PM
|
显示全部楼层
1.find the value of t such that 2y=x+t is a tangent to the ellipse x^2+16y^2=16
2. A straight l ...
白羊座aries 发表于 17-8-2010 08:31 PM ![](http://cforum2.cari.com.my/images/common/back.gif)
1.find the value of t such that 2y=x+t is a tangent to the ellipse x^2+16y^2=16
x^2+16y^2=16
2x + 32y(dy/dx) =0
m=dy/dx = -2x/32y
y=mx+c
y=x/2+t/2
when the gradient of tangent and the gradient point of ellipse are the same ..
-2x/32y = 1/2
-4x=32y
8y+x=0
x=-8y
sub x=-8y into x^2+16y^2=16 to get the point of the tangent
64y^2 + 16y^2 = 16
80y^2=16
y= +- (1/5)^(1/2)
x= - + 8(1/5)^(1/2)
from the ques
2y=x+t , sub back the point of tangent into the equation
y= + (1/5)^(1/2) ,x= - 8(1/5)^(1/2)
2(1/5)^(1/2) = -8(1/5)^(1/2) +t
t=10(1/5)^(1/2)
y=- (1/5)^(1/2) , x=+ 8(1/5)^(1/2)
-2 (1/5)^(1/2) =+ 8(1/5)^(1/2) + t
t=-10(1/5)^(1/2)
3.Find the equation of the tangent to the hyperbola x^2-2y^2=1 which is paralllel to the line 4y=3x
y=3x/4
m=3/4
x^2-2y^2=1
2x - 4y(dy/dx) =0
dy/dx = x/2y
the same gradient of tangent and hyperbola ..
2x/4y=3/4
8x=12y
2x=3y
x=3y/2
sub x=3y/2 into x^2-2y^2=1 to get the point
9y^2/4 -2y^2 =1
9y^2 -8y^2 =4
y^2=4
y= +- 2
x=3y/2, x=-+3
we know that if the line is parallel , the gradient is the same , so we take t as a unknow that can change the position of line... and we sub back the pnt we get ...
y=3x/4 + t
x=-3 , y= 2
t=2 + 9/4
= 17/4
x=3 , y=-2
-2 = 9/4 +t
t= - 17/4
eqn , 1 . y=3x/4 + 17/4
4y=3x+17
2.y=3x/4 - 17/4
4y=3x-17 |
|
|
|
|
|
|
|
![](static/image/common/ico_lz.png)
楼主 |
发表于 18-8-2010 12:54 AM
|
显示全部楼层
1.Given 2 points A ( -5,-8 ) and C ( 3,4) .A straight line which passes through the point A touches a circle with C as the centre at P. find the equation of AP and the equation of the circle
2.Find the equation of the circle with radius 5 units,which touch the y-axis and pass through the point (3,1) |
|
|
|
|
|
|
|
发表于 18-8-2010 08:17 PM
|
显示全部楼层
本帖最后由 peaceboy 于 18-8-2010 09:27 PM 编辑
1.Given 2 points A ( -5,-8 ) and C ( 3,4) .A straight line which passes through the point A touches ...
白羊座aries 发表于 18-8-2010 12:54 AM ![](http://cforum2.cari.com.my/images/common/back.gif)
第一题有答案么?不是很清楚问题说什么
2.2.Find the equation of the circle with radius 5 units,which touch the y-axis and pass through the point (3,1)
let the center = (a,b)
(x-a)^2 + (y-b)^2 = 25
x=3 , y=1
(3-a)^2 + (1-b)^2 = 25
9-6a+a^2 + 1-2b+b^2 = 25
a^2 - 6a + b^2 -2b = 15 ---- 1
the point touch the y-axis ,(0,b)
(0-a)^2 + (b-b)^2 = 25
a^2 = 25
a= +-5
from 1 , when a = 5 ,
a^2 - 6a + b^2 -2b = 15
25-30+b^2-2b = 15
b^2-2b = 20
b^2-2b-20=0
b= (2+-(4+80)^(1/2)) / 2
=[ 2+- 2(21)^(1/2) ] / 2
= 1 +- (21)^(1/2)
when a = -5
(-5)^2 - 6(-5)+ b^2 -2b = 15
25+30+ b^2 -2b = 15
b^2-2b+40=0
b^2 - 4ac = 4-4(1)(40)
= -76 (<0) , have no real roots
so the equation is (x-5)^2 + (y-[1+(21)^(1/2)])^2 = 25
and (x-5)^2 + (y - [1-(21)^(1/2)])^2 = 25 |
|
|
|
|
|
|
|
发表于 18-8-2010 11:41 PM
|
显示全部楼层
If y^3=6xy-x^3-1, prove that dy/dx=(2y-x^2)/(y^2-2x) and that the maximum value of y occurs when x^3=8+√114 and the minimum value when x^3=8-√114 . |
|
|
|
|
|
|
|
发表于 19-8-2010 12:03 AM
|
显示全部楼层
If y^3=6xy-x^3-1, prove that dy/dx=(2y-x^2)/(y^2-2x) and that the maximum value of y occurs when x^3 ...
芭樂 发表于 18-8-2010 11:41 PM ![](http://cforum2.cari.com.my/images/common/back.gif)
y^3=6xy-x^3-1
3y^2(dy/dx) = 6x(dy/dx) + 6y -3x^2
3y^2(dy/dx)- 6x(dy/dx)=6y -3x^2
dy/dx = (6y -3x^2)/(3y^2-6)
=3(2y-x^2)/3(y^2-2x)
=(2y-x^2)/(y^2-2x)
dy/dx=0
(2y-x^2)/(y^2-2x)=0
(2y-x^2)=0
x^2 = 2y
y=(x^2)/2
sub back to the equation ., y^3=6xy-x^3-1
((x^2)/2)^3=6x((x^2)/2)-x^3-1
x^6/8 = 6x^3/2 - x^3 - 1
x^6 - 16x^3 +8 =0
x^3 = [16 +-(16^2 - 4(1)(8)) ]/2
= 8 +- (224)^(1/2) / 2
= 8 +- (56)^1/2 ...
to find out maximun or min , use the table method ,
答案不太一样 = =你帮我检查看 |
|
|
|
|
|
|
|
发表于 20-8-2010 01:29 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 20-8-2010 09:16 PM
|
显示全部楼层
本帖最后由 芭樂 于 20-8-2010 09:46 PM 编辑
1 A right circular cone of height h is inscribed in a sphere of radius R. Show that the volume V of the cone is given by
V = (pie/3)(2Rh^2-h^3)
2 A right circular cone of base radius r and height h has a total surface area S and volume V.Show that 9V^2 = r^2(S^2-2pier^2S). Hence or otherwise, show that for a fixed surface area S, the maximum volume of the cone occurs when its semi-vertical angle A is given that by tan A = 8^-.5
3 A right pyramid has a square base of side x m and a total surface area (base and four sides) 72m^2. Show that the volume, Vcm^3, is given by v^2 = 144x^2 - 4x^4. If x varies, find the value of x for which V is a maximum and obtain the maximum values of V.
谢谢。帮我prove就可以了 |
|
|
|
|
|
|
| |
本周最热论坛帖子
|