|
发表于 12-8-2010 06:29 PM
|
显示全部楼层
和我的方法一样么?好奇下有没有其他解法...
peaceboy 发表于 11-8-2010 11:18 PM ![](http://cforum2.cari.com.my/images/common/back.gif)
不一样哦。。。
我的方法是
n^2+1
=(2k+1)^2+1 , 2k+1永远是单数,k is Natural Number
=4k^2+4k+1+1
=4k^2+4k+2
=2(2k^2+2k+1)
因为2k^2+2k+1是单数
所以n^2+1的数目最多只能被2整除 |
|
|
|
|
|
|
|
发表于 12-8-2010 06:40 PM
|
显示全部楼层
我的意思是n^2+1的最多只能被2整除
而不能被2个factor 2连续整除... |
|
|
|
|
|
|
|
发表于 12-8-2010 07:14 PM
|
显示全部楼层
我的意思是n^2+1的最多只能被2整除
而不能被2个factor 2连续整除...
Lov瑜瑜4ever 发表于 12-8-2010 06:40 PM ![](http://cforum2.cari.com.my/images/common/back.gif)
比我的容易得多... |
|
|
|
|
|
|
|
发表于 12-8-2010 08:47 PM
|
显示全部楼层
白羊
dy/dx= cos 2y
∫ 1/cos 2y dy = ∫ dx
∫ sec 2y (1) dy = ∫ dx
∫ sec2y (sec 2y +tan 2y)/(sec 2y +tan 2y) dy = ∫ dx
1/2∫ (2sec² 2y +2sec 2y tan 2y)/(sec 2y +tan 2y) dy =∫ dx
1/2 ln l sec 2y + tan 2y l = x + c
sec 2y + tan 2y = Ae^2x , A=e^x
(1+ tan y)/(1- tany) =Ae^2x
rearrange, tan y = (Ae^2x -1)/(Ae^2x +1)
y = tan^-1 { (Ae^2x -1)/(Ae^2x +1) }
sec 2y + tan 2y = 1+ tan y /1- tan y can be xpress try on ur own .
u can also use substitution t= tan y for∫ sec 2y dy. |
|
|
|
|
|
|
|
发表于 12-8-2010 09:10 PM
|
显示全部楼层
白羊
dy/dx= cos 2y
∫ 1/cos 2y dy = ∫ dx
∫ sec 2y (1) dy = ∫ dx
∫ sec2y (sec 2y +tan 2y)/(s ...
Log 发表于 12-8-2010 08:47 PM ![](http://cforum1.cari.com.my/images/common/back.gif)
log大哥,这不是Maths T的differential equation吗?![](static/image/smiley/default/shocked.gif) |
|
|
|
|
|
|
|
发表于 13-8-2010 10:57 PM
|
显示全部楼层
y=e^x+4e^-2xfind the coordinate and nature of the stationary points.
(ans: (ln 2,3) minimum point)
y=x^2 ln x
find all the points of inflexion.
(ans: e^-2/3 , -3e^-3/2) |
|
|
|
|
|
|
|
发表于 13-8-2010 11:05 PM
|
显示全部楼层
y=e^x+4e^-2xfind the coordinate and nature of the stationary points.
(ans: (ln 2,3) minimum point)
y=x^2 ln x
find all the points of inflexion.
(ans: e^-2/3 , -3e^-3/2) |
|
|
|
|
|
|
|
发表于 13-8-2010 11:07 PM
|
显示全部楼层
RE: 数学Paper 1讨论专区
y=e^x+4e^-2xfind the coordinate and nature of the stationary points.
(ans: (ln 2,3) minimum point)
y=x^2 ln x
find all the points of inflexion.
(ans: e^-2/3 , -3e^-3/2) |
|
|
|
|
|
|
|
发表于 14-8-2010 07:59 PM
|
显示全部楼层
Given that y=sin x/x^2 , x>0, prove that x^2 (d^2 y)/(dx^2 )+4x dy/dx+(x^2+2)y=0
谢谢 |
|
|
|
|
|
|
|
发表于 14-8-2010 08:11 PM
|
显示全部楼层
本帖最后由 Allmaths 于 14-8-2010 08:12 PM 编辑
Given that y=sin x/x^2 , x>0, prove that x^2 (d^2 y)/(dx^2 )+4x dy/dx+(x^2+2)y=0
谢谢
芭樂 发表于 14-8-2010 07:59 PM ![](http://cforum.cari.com.my/images/common/back.gif)
y=sin x/x^2
(x^2)y=sin x
(x^2)(dy/dx)+2xy=cos x
(x^2)(d^2y/dx^2)+2x(dy/dx)+2x(dy/dx)+2y=-sin x
(x^2)(d^2y/dx^2)+4x(dy/dx)+2y+sin x=0
(x^2)(d^2y/dx^2)+4x(dy/dx)+2y+(x^2)y=0
(x^2)(d^2y/dx^2)+4x(dy/dx)+(x^2+2)y=0 |
|
|
|
|
|
|
|
发表于 14-8-2010 08:25 PM
|
显示全部楼层
回复 1525# Allmaths
发错了!发到这里![](static/image/smiley/default/3sweat.gif) |
|
|
|
|
|
|
|
发表于 15-8-2010 10:54 AM
|
显示全部楼层
Find the value of k if x/((x+1)^2 (x-k)) has a stationary point |
|
|
|
|
|
|
|
发表于 15-8-2010 11:14 AM
|
显示全部楼层
Find the value of k if x/((x+1)^2 (x-k)) has a stationary point
芭樂 发表于 15-8-2010 10:54 AM ![](http://cforum1.cari.com.my/images/common/back.gif)
方便写下答案吗?![](static/image/smiley/default/biggrin.gif) |
|
|
|
|
|
|
|
发表于 15-8-2010 11:41 AM
|
显示全部楼层
A spherical balloon is inflated bt gas being such that its volume is increasing at a constant rate. Show that the rate of increase of the surface area of the balloon is incersely proportional to its radius.
谢谢 |
|
|
|
|
|
|
|
发表于 15-8-2010 11:47 AM
|
显示全部楼层
Find the value of k if x/((x+1)^2 (x-k)) has a stationary point
芭樂 发表于 15-8-2010 10:54 AM ![](http://cforum1.cari.com.my/images/common/back.gif)
![](http://img440.imageshack.us/img440/2337/diff4.jpg) |
|
|
|
|
|
|
|
发表于 15-8-2010 05:56 PM
|
显示全部楼层
Find the value of
n
∑r(r!)
r=1 |
|
|
|
|
|
|
|
发表于 15-8-2010 06:02 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 15-8-2010 06:41 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 15-8-2010 06:46 PM
|
显示全部楼层
A spherical balloon is inflated bt gas being such that its volume is increasing at a constant rate. ...
芭樂 发表于 15-8-2010 11:41 AM ![](http://cforum2.cari.com.my/images/common/back.gif)
A =4 pi r^2
da/dr = 8 pi r ![](static/image/smiley/default/icon_redface.gif)
就酱呱
|
|
|
|
|
|
|
|
发表于 15-8-2010 07:29 PM
|
显示全部楼层
|
|
|
|
|
|
| |
本周最热论坛帖子
|