|
发表于 8-8-2010 02:56 PM
|
显示全部楼层
回复 Lov瑜瑜4ever
哦,原来是这样。谢谢
yingchin 发表于 8-8-2010 02:09 PM
不用客气 |
|
|
|
|
|
|
|
发表于 8-8-2010 05:43 PM
|
显示全部楼层
1.If x+y+z=c , show that x^2+y^2+z^2is greater and equal to c^3
2.if (x+yi)^2=x+yi, where x+y are real, find the possible values of x and y. |
|
|
|
|
|
|
|
发表于 8-8-2010 09:45 PM
|
显示全部楼层
1.If x+y+z=c , show that x^2+y^2+z^2is greater and equal to c^3
2.if (x+yi)^2=x+yi, where x+y are ...
blazex 发表于 8-8-2010 05:43 PM
1.题目有问题么?
如果x= 1 , y=2 , z = 3 ,then c^3 = 6^3 = 216
x^2+y^2+z^2 = 1+4+9 =14
x^2+y^2+z^2 < c^3
2.(x+yi)^2=x^2 + 2xyi - y^2
= x^2 - y^2 + 2xyi = x+yi
by compare the real part and the img part
2xy = y
2x=1
x= 1/2
x^2 - y^2 = x
1/4 -1/2 = y^2
y = +- (-1/4)^(1/2)
= +- (1/2)i
结果我又不会了.... |
|
|
|
|
|
|
|
发表于 8-8-2010 11:26 PM
|
显示全部楼层
回复 1502# blazex
for Q 2, mm..这到是98年 maths S 的问题
(x+yi)^2=x+yi
let z=x+yi
z^2=z
z^2-z=0
z(z-1)=0
z=0 or z=1
x+yi=0 or x+yi=1
compare real and imaginary part,
so, x=0, y=0 or,x=1 , y=0.
for Q 1, 有打错吗? |
|
|
|
|
|
|
|
发表于 8-8-2010 11:30 PM
|
显示全部楼层
回复 blazex
for Q 2, mm..这到是98年 maths S 的问题
(x+yi)^2=x+yi
let z=x+yi
z^2=z
z^2-z=0
z ...
Log 发表于 8-8-2010 11:26 PM
厉害 |
|
|
|
|
|
|
|
发表于 8-8-2010 11:34 PM
|
显示全部楼层
回复 1503# peaceboy
如这样做的话,我们知道x 或 y可能=0,除x,y怕会出现fallacy |
|
|
|
|
|
|
|
发表于 8-8-2010 11:35 PM
|
显示全部楼层
回复 peaceboy
如这样做的话,我们知道x 或 y可能=0,除x,y怕会出现fallacy
Log 发表于 8-8-2010 11:34 PM
我很自然的忘了=0这个可能性 |
|
|
|
|
|
|
|
发表于 8-8-2010 11:36 PM
|
显示全部楼层
回复 1505# peaceboy
彼此。彼此。。 |
|
|
|
|
|
|
|
发表于 9-8-2010 02:46 PM
|
显示全部楼层
请问这题怎样solve? |
|
|
|
|
|
|
|
发表于 9-8-2010 03:36 PM
|
显示全部楼层
请问这题怎样solve?
lonely_world 发表于 9-8-2010 02:46 PM
2^(n-2) + 3n = 2n/4 + 3n
sigma [2^n/4 + 3n] = (1/4)sigma 2^n + 3 sigma n
= (1/4) 2[(2^n -1)/(n-1)] + 3 (n/2)(1+n)
= (1/2)[(2^n -1)/(n-1)] + (3n/2)(1+n)
懒惰simplify了 |
|
|
|
|
|
|
|
发表于 9-8-2010 03:44 PM
|
显示全部楼层
回复 1510# peaceboy
不是很明白你写什么哦..有点乱的感觉. |
|
|
|
|
|
|
|
发表于 9-8-2010 04:09 PM
|
显示全部楼层
这样吧...
我很久没动mathematic了。。忘了99%。。。 |
|
|
|
|
|
|
|
发表于 9-8-2010 04:14 PM
|
显示全部楼层
回复 1512# Dicardo
你们2个的好像有点不同哦~我乱了~~~~ |
|
|
|
|
|
|
|
发表于 9-8-2010 06:50 PM
|
显示全部楼层
回复 Dicardo
你们2个的好像有点不同哦~我乱了~~~~
lonely_world 发表于 9-8-2010 04:14 PM
没有不同 |
|
|
|
|
|
|
|
发表于 9-8-2010 08:04 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 9-8-2010 08:06 PM
|
显示全部楼层
有不同...
Allmaths 发表于 9-8-2010 08:04 PM
我sub错东西tim .... |
|
|
|
|
|
|
|
发表于 11-8-2010 10:02 AM
|
显示全部楼层
如果n取odd positive integer的话
那么要怎样证明n^2+1只能被2整除
而不能被2^t整除,t是大于1的positive integer
这个有办法证明出来的吗? |
|
|
|
|
|
|
|
发表于 11-8-2010 07:46 PM
|
显示全部楼层
如果n取odd positive integer的话
那么要怎样证明n^2+1只能被2整除
而不能被2^t整除,t是大于1的positive ...
Lov瑜瑜4ever 发表于 11-8-2010 10:02 AM
试试看...
n^2+1 = (n+1)^2 -2n
= 2^2 ((n+1)/2)^2 - 2n
2^2 ((n+1)/2)^2 - 2n divide by 2
= 2 ((n+1)/2)^2 - n , since n+1 is even num , so it can be complete divide by 2...
2^2 ((n+1)/2)^2 - 2n divide by 2^(1+x) , x is positive integer ,
= [2^2 ((n+1)/2)^2 - 2n]/2(2^x)
= [2((n+1)/2)^2 - n]/2^x
since 2((n+1)/2)^2 is always even num and n is always odd number ... even num minus odd num will always get odd number , and odd num cant be devide by 2 and 2^x
乱乱来 |
|
|
|
|
|
|
|
发表于 11-8-2010 09:40 PM
|
显示全部楼层
试试看...
n^2+1 = (n+1)^2 -2n
= 2^2 ((n+1)/2)^2 - 2n
2^2 ((n+1)/2)^2 - 2 ...
peaceboy 发表于 11-8-2010 07:46 PM
噢噢
这个我已经在2~3小时之前证出来了
anyway...thank you... |
|
|
|
|
|
|
|
发表于 11-8-2010 11:18 PM
|
显示全部楼层
噢噢
这个我已经在2~3小时之前证出来了
anyway...thank you...
Lov瑜瑜4ever 发表于 11-8-2010 09:40 PM
和我的方法一样么?好奇下有没有其他解法... |
|
|
|
|
|
|
| |
本周最热论坛帖子
|