|
发表于 26-5-2010 09:52 PM
|
显示全部楼层
回复 1120# walrein_lim88
JBSSi
哈哈
哇
你STPM拿多少啊?
数学应该有A吧
哈哈 |
|
|
|
|
|
|
|
发表于 26-5-2010 09:57 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 26-5-2010 09:58 PM
|
显示全部楼层
回复 1122# walrein_lim88
CGPA??
lol |
|
|
|
|
|
|
|
发表于 26-5-2010 09:59 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 26-5-2010 10:01 PM
|
显示全部楼层
回复 1124# walrein_lim88
wawawaawawawaw
4flat!!!!
lol
pro
why u got maths??
what subject did you take?
lol |
|
|
|
|
|
|
|
发表于 26-5-2010 10:01 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 28-5-2010 10:32 AM
|
显示全部楼层
回复 1102# willyi
我用搜狗输入拼音法,
ur answer ...mm..a bit mistakes..
|
|
|
|
|
|
|
|
发表于 28-5-2010 04:45 PM
|
显示全部楼层
4.00...... (P/s: 我是文科生)
walrein_lim88 发表于 26-5-2010 09:59 PM
你也有拿maths T? |
|
|
|
|
|
|
|
发表于 28-5-2010 05:15 PM
|
显示全部楼层
回复 walrein_lim88
wawawaawawawaw
4flat!!!!
lol
pro
why u got maths??
what subject did you ...
willyisstupid 发表于 26-5-2010 10:01 PM
他是拿5A。。。但是10張考卷里有一張不是A |
|
|
|
|
|
|
|
发表于 28-5-2010 05:16 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 28-5-2010 06:13 PM
|
显示全部楼层
他是拿5A。。。但是10張考卷里有一張不是A
harry_lim 发表于 28-5-2010 05:15 PM
哪张没有A。。。? |
|
|
|
|
|
|
|
发表于 29-5-2010 07:42 PM
|
显示全部楼层
哈哈~最喜欢differentiation的画graph~~最喜欢graph~ |
|
|
|
|
|
|
|
发表于 29-5-2010 10:22 PM
|
显示全部楼层
不好意思,当你们谈的这么投入的时候又来打扰
1.The complex number z is given by
z=1+cos A+i sin A
where - pi<A<pi
Show that for all values of A, the point representing in z in an Argand diagram
is located in a circle. Find the centre and radius of the circle.
2.Prove without using a calculator, that
a) (5^(1/2)+2)^4+(5^(1/2)-2)^4=322
b)321<(5^(1/2)+2)^4<322
3.Show that ,if n is a positive integer then the value of n(n+2) is between n^2
and (n+1)^2 |
|
|
|
|
|
|
|
发表于 30-5-2010 08:00 AM
|
显示全部楼层
不好意思,当你们谈的这么投入的时候又来打扰
1.The complex number z is given by
z=1 ...
blazex 发表于 29-5-2010 10:22 PM
第2题请看第42页的1042楼
这题我问过了 |
|
|
|
|
|
|
|
发表于 30-5-2010 08:17 AM
|
显示全部楼层
不好意思,当你们谈的这么投入的时候又来打扰
1.The complex number z is given by
z=1 ...
blazex 发表于 29-5-2010 10:22 PM
你的第3题应该也是从Federal参考书拿出来的吧?
你的问题不是很完整
你问的是
n^2<n(n+2)<(n+1)^2 for n=positive integers吧?
expand的话就变成
n^2<n^2+2n<n^2+2n+1
then let n^2=k
k<k+2n<k+2n+1
then let m=2n and m is always positive since n is always positive
k<k+m<k+m+1
since k and m is always positive
thus, obviously k<k+m<k+m+1 is true...
这是我的证法
不懂对不对。。。 |
|
|
|
|
|
|
|
发表于 30-5-2010 10:44 AM
|
显示全部楼层
回复 1135# blazex
z=1+cos A+i sin A
|z - (cos A + i sin A)| = 1
Let z = x + iy
|(x+iy) - (cos A + i sin A)| = 1
|(x - cosA) + i(y - sinA)| = 1
√[(x - cosA)^2 + (y - sinA)^2] = 1
(x - cosA)^2 + (y - sinA)^2 = 1
Centre= (cos A, sin A) ; radius = 1
应该是这样, 不肯定... |
|
|
|
|
|
|
|
发表于 30-5-2010 03:18 PM
|
显示全部楼层
回复 1126# walrein_lim88
厉害厉害..几时教教我 想不到你原来你拿的subjek和我一样耶 |
|
|
|
|
|
|
|
发表于 30-5-2010 04:33 PM
|
显示全部楼层
怎样做?
1) if 2^p = 3^q = 12^r, show that pq= r(p + 2q)
2) given 7(8^p) = 9(5^q) and 7(16)^p+1 = 12(5^q), show that 2^p=1/12 |
|
|
|
|
|
|
|
发表于 30-5-2010 05:37 PM
|
显示全部楼层
怎样做?
1) if 2^p = 3^q = 12^r, show that pq= r(p + 2q)
2) given 7(8^p) = 9(5^q) and 7(16)^p+1 = 12(5^q), show that 2^p=1/12
破晓时分 发表于 30-5-2010 04:33 PM
1. Let x = 2^p = 3^q = (2^2)(3)^r
x = 2^ p = 3^q = (2^2r)(3^r)
From x = 2^p, 2=x^(1/p)
x = 3^q, 3=x^(1/q)
x=(2^2r)(3^r)
x =[ x^(1/p)(2r)][x^(1/q)(r)]
1 = 2r/p + r/q
Multiply pq : pq = 2rq+rp
pq = r(p+2q) shown |
|
|
|
|
|
|
|
发表于 30-5-2010 05:47 PM
|
显示全部楼层
本帖最后由 Lov瑜瑜4ever 于 30-5-2010 05:51 PM 编辑
given 7(8^p) = 9(5^q) and 7(16)^p+1 = 12(5^q), show that 2^p=1/12
7(8^p) = 9(5^q) Eq1
7(16)^p+1 = 12(5^q) Eq2
(Eq1)/(Eq2), (8^p)/(16)^p+1=3/4
4(8^p)=3(16)^p+1
4(8^p)=48(16^p)
(16/8)^p=4/48
2^p=1/12 (shown) |
|
|
|
|
|
|
| |
本周最热论坛帖子
|