佳礼资讯网

 找回密码
 注册

ADVERTISEMENT

楼主: 白羊座aries

数学Paper 1讨论专区

   关闭 [复制链接]
发表于 9-12-2009 09:37 PM | 显示全部楼层
回复 620# idontwant2b


    (a)很简单而已,
       To be quadratic equation, coeficient of X^2 cannot = 0
      K + 1 cannot = 0
      K cannot = -1
     ( K is the element of real number ,K cannot be -1)
回复

使用道具 举报


ADVERTISEMENT

发表于 12-12-2009 10:53 PM | 显示全部楼层
今年的maths1算是很容易的说 >v<
回复

使用道具 举报

发表于 13-12-2009 11:42 AM | 显示全部楼层
回复 616# lonely_world

b). let the roots be a ( a>0)and b ( b<0),then,
P.O.R , ab<0
              c/a <0
              (k+2)/ (k+1)<0
              ∴ -2< k < -1

但是,这问题有没有出错?有problem
回复

使用道具 举报

发表于 14-12-2009 01:15 AM | 显示全部楼层
Show that the equation f(x)=(k+1)x^2+(2k+3)x+(k+2)=0 has real roots
[f(x)=0 has real roots 意思是b^2 - 4ac ≥ 0 就是
equals to 0 or greater than 0 i.e.
equal real roots or distinct real roots]
for
all real values of k. find the set of values of k for which

f(x)=0 is a quadratic equation and has one positive & one negative real roots.
[意思是f(x) has two distinct real roots with one 1 +ve and 1 -ve real roots]

Sketch the graph of f(x)=(k+1)x^2+(2k+3)x+(k+2) for k=-1 1/2.


Solution:

f(x) = (k+1)x^2 + (k+3)x + (k+2) = 0

b^2 - 4ac = (k+3)^2 - 4(k+1)(k+2)
= 1 (Since b^2 - 4ac > 0,
then it has two distinct real roots)

f(x) = 0 => (k+1)x^2 + (k+3)x + (k+2) = 0

x = [-b ± √(b^2 - 4ac)]/2a
= [-(2k+3) ± √(1)]/2(k+1)
= -1 or -2(K+2)/2(k+1)
= -1 or -(K+2)/(k+1)

The two distinct real roots are -1 and -(K+2)/(k+1).
Since f(x) = 0 has one positive and one negative roots, then
x=-1 is negative root but x=-(K+2)/(k+1) is positive root.

Therefore, -(K+2)/(k+1)≥0
(K+2)/(k+1)≤0
-2 < k < -1

Sketch the graph of f(x)=(k+1)x^2+(2k+3)x+(k+2) for k=-1 1/2.

Solution:


Substitute k=-1 1/2 into f(x), then f(x) = -1/2 x^2 + 1/2

When f(x) = 0, then the distinct roots of f(x)= 0 are x = ±√1.
When x= 0 , then f(0) = 1/2 [It is y-intercept]


Find the turning point,
f(x) = -1/2 x^2 + 1/2
f'(x) = - x = 0 => x=0, and y = 1/2

f "(x) = -1 < 0 (It is a max. point)
Therefore, (0,1/2) is a max. point)


The graph passes through points (1,0), (-1,0), and (0,1/2).
Sketch the graph based on those points with 'n' shape.
回复

使用道具 举报

发表于 3-1-2010 10:57 PM | 显示全部楼层
show that 1 is a zero of the polynomial f(x)=x^3 -7x^2 +7x -11. hence, find the polynomial g(x) such that f(x)=(x-1)g(x).
show that g(x) is always positive.hence, determine the set of values of x for which x^2 +17  ≤ 7x + (11/x)

[0<x ≤1]

麻烦教我这题..
回复

使用道具 举报

发表于 3-1-2010 11:21 PM | 显示全部楼层
show that 1 is a zero of the polynomial f(x)=x^3 -7x^2 +7x -11. hence, find the polynomial g(x) such ...
lonely_world 发表于 3-1-2010 10:57 PM




回复

使用道具 举报

Follow Us
发表于 3-1-2010 11:24 PM | 显示全部楼层
walrein_lim88 发表于 3-1-2010 11:21 PM



    我的答案有点错误
因为那个x是分母,x不可以=0
所以那个range of x shud be { 0<x<1 }
If the question ask find the set of value x, got the word SET. must put this { }
回复

使用道具 举报

 楼主| 发表于 5-1-2010 09:47 PM | 显示全部楼层
lim   (√ x -√ 3 ) / [(x )(x-3)]
x->3

ans:√ 3/18

lim
x->1-  |x^2 -1|/(x-1)

ans: -2


fx=(x-1)(x-3), x<3
find value of x such that f(x)=f^-1(x)
f^-1(x) is inverse of fx

我找到f^-1
怎样找value of x =.=
回复

使用道具 举报


ADVERTISEMENT

发表于 5-1-2010 10:08 PM | 显示全部楼层
can show ur working for f(x) = f^-1(x)?
回复

使用道具 举报

发表于 5-1-2010 10:19 PM | 显示全部楼层
是x=0,3,和两个complex value?
回复

使用道具 举报

发表于 5-1-2010 10:35 PM | 显示全部楼层
lim   (√ x -√ 3 ) / [(x )(x-3)]
x->3

其实(x^2 - y^2)可以是(x - y)(x + y)。这个应该是common了。用这个就可以消除掉(x - 3)这一组了。

lim
x->1-  |x^2 -1|/(x-1)


这个因为lim->1-的关系,做法也比较复杂点。记得别忽略modulus的function和application。(x - 1)可以被cancel掉,别忽略sign。
回复

使用道具 举报

 楼主| 发表于 5-1-2010 10:51 PM | 显示全部楼层
是x=0,3,和两个complex value?
四月一日的小皮 发表于 5-1-2010 10:19 PM



   
我也是算到2个complex values,但是答案给其中一个。
..
(x^2 -4x +1)^2 = x+1
这么做
回复

使用道具 举报

 楼主| 发表于 5-1-2010 10:54 PM | 显示全部楼层
lim   (√ x -√ 3 ) / [(x )(x-3)]
x->3

其实(x^2 - y^2)可以是(x - y)(x + y)。这个应该 ...
四月一日的小皮 发表于 5-1-2010 10:35 PM


可以不要只是解释吗?能帮忙做吗?如果你这么解释我就会,那么我早就会了
回复

使用道具 举报

发表于 5-1-2010 11:41 PM | 显示全部楼层
fx=(x-1)(x-3), x<3
find value of x such that f(x)=f^-1(x)
f^-1(x) is inverse of fx
是不是x=0.6972?
回复

使用道具 举报

 楼主| 发表于 5-1-2010 11:47 PM | 显示全部楼层
fx=(x-1)(x-3), x
Log 发表于 5-1-2010 11:41 PM



   
对啦,0.6972...
还有一个complex number为什么拒绝?
回复

使用道具 举报

发表于 5-1-2010 11:50 PM | 显示全部楼层
for function and graph , we must always take REAL x values
回复

使用道具 举报


ADVERTISEMENT

发表于 5-1-2010 11:54 PM | 显示全部楼层
这题这样做,f(x)=f-1(x),if you sketch ,you will find that this two curves intersect at y=x .
thus,f(x)=f-1(x)=x
        f(x)=x
        x^2-4x+3=x
.....
回复

使用道具 举报

发表于 6-1-2010 12:13 AM | 显示全部楼层
可以不要只是解释吗?能帮忙做吗?如果你这么解释我就会,那么我早就会了
白羊座aries 发表于 5-1-2010 10:54 PM



   

回复

使用道具 举报

 楼主| 发表于 6-1-2010 12:14 AM | 显示全部楼层
这题这样做,f(x)=f-1(x),if you sketch ,you will find that this two curves intersect at y=x .
thus, ...
Log 发表于 5-1-2010 11:54 PM



   
f-1x = surd x+1
fx=f-1x
then,
x^2 -4x +1 = surd x+1
(x^2-4x+1)^2 = x+1 .
应该是这样才对阿
回复

使用道具 举报

发表于 6-1-2010 12:16 AM | 显示全部楼层
f-1x = surd x+1
fx=f-1x
then,
x^2 -4x +1 = surd x+1
(x^2-4x+1)^2 = x+1 .
应该是这样 ...
白羊座aries 发表于 6-1-2010 12:14 AM



    是什么答案??
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

 

所属分类: 欢乐校园


ADVERTISEMENT



ADVERTISEMENT



ADVERTISEMENT

ADVERTISEMENT


版权所有 © 1996-2023 Cari Internet Sdn Bhd (483575-W)|IPSERVERONE 提供云主机|广告刊登|关于我们|私隐权|免控|投诉|联络|脸书|佳礼资讯网

GMT+8, 15-1-2025 06:17 PM , Processed in 0.109872 second(s), 20 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表