|
发表于 9-12-2009 09:37 PM
|
显示全部楼层
回复 620# idontwant2b
(a)很简单而已,
To be quadratic equation, coeficient of X^2 cannot = 0
K + 1 cannot = 0
K cannot = -1
( K is the element of real number ,K cannot be -1) |
|
|
|
|
|
|
|
发表于 12-12-2009 10:53 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 13-12-2009 11:42 AM
|
显示全部楼层
回复 616# lonely_world
b). let the roots be a ( a>0)and b ( b<0),then,
P.O.R , ab<0
c/a <0
(k+2)/ (k+1)<0
∴ -2< k < -1
但是,这问题有没有出错?有problem |
|
|
|
|
|
|
|
发表于 14-12-2009 01:15 AM
|
显示全部楼层
Show that the equation f(x)=(k+1)x^2+(2k+3)x+(k+2)=0 has real roots
[f(x)=0 has real roots 意思是b^2 - 4ac ≥ 0 就是
equals to 0 or greater than 0 i.e.
equal real roots or distinct real roots]
for
all real values of k. find the set of values of k for which
f(x)=0 is a quadratic equation and has one positive & one negative real roots.
[意思是f(x) has two distinct real roots with one 1 +ve and 1 -ve real roots]
Sketch the graph of f(x)=(k+1)x^2+(2k+3)x+(k+2) for k=-1 1/2.
Solution:
f(x) = (k+1)x^2 + (k+3)x + (k+2) = 0
b^2 - 4ac = (k+3)^2 - 4(k+1)(k+2)
= 1 (Since b^2 - 4ac > 0,
then it has two distinct real roots)
f(x) = 0 => (k+1)x^2 + (k+3)x + (k+2) = 0
x = [-b ± √(b^2 - 4ac)]/2a
= [-(2k+3) ± √(1)]/2(k+1)
= -1 or -2(K+2)/2(k+1)
= -1 or -(K+2)/(k+1)
The two distinct real roots are -1 and -(K+2)/(k+1).
Since f(x) = 0 has one positive and one negative roots, then
x=-1 is negative root but x=-(K+2)/(k+1) is positive root.
Therefore, -(K+2)/(k+1)≥0
(K+2)/(k+1)≤0
-2 < k < -1
Sketch the graph of f(x)=(k+1)x^2+(2k+3)x+(k+2) for k=-1 1/2.
Solution:
Substitute k=-1 1/2 into f(x), then f(x) = -1/2 x^2 + 1/2
When f(x) = 0, then the distinct roots of f(x)= 0 are x = ±√1.
When x= 0 , then f(0) = 1/2 [It is y-intercept]
Find the turning point,
f(x) = -1/2 x^2 + 1/2
f'(x) = - x = 0 => x=0, and y = 1/2
f "(x) = -1 < 0 (It is a max. point)
Therefore, (0,1/2) is a max. point)
The graph passes through points (1,0), (-1,0), and (0,1/2).
Sketch the graph based on those points with 'n' shape. |
|
|
|
|
|
|
|
发表于 3-1-2010 10:57 PM
|
显示全部楼层
show that 1 is a zero of the polynomial f(x)=x^3 -7x^2 +7x -11. hence, find the polynomial g(x) such that f(x)=(x-1)g(x).
show that g(x) is always positive.hence, determine the set of values of x for which x^2 +17 ≤ 7x + (11/x)
[0<x ≤1]
麻烦教我这题.. |
|
|
|
|
|
|
|
发表于 3-1-2010 11:21 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 3-1-2010 11:24 PM
|
显示全部楼层
walrein_lim88 发表于 3-1-2010 11:21 PM
我的答案有点错误
因为那个x是分母,x不可以=0
所以那个range of x shud be { 0<x<1 }
If the question ask find the set of value x, got the word SET. must put this { } |
|
|
|
|
|
|
|
楼主 |
发表于 5-1-2010 09:47 PM
|
显示全部楼层
lim (√ x -√ 3 ) / [(x )(x-3)]
x->3
ans:√ 3/18
lim
x->1- |x^2 -1|/(x-1)
ans: -2
fx=(x-1)(x-3), x<3
find value of x such that f(x)=f^-1(x)
f^-1(x) is inverse of fx
我找到f^-1
怎样找value of x =.= |
|
|
|
|
|
|
|
发表于 5-1-2010 10:08 PM
|
显示全部楼层
can show ur working for f(x) = f^-1(x)? |
|
|
|
|
|
|
|
发表于 5-1-2010 10:19 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 5-1-2010 10:35 PM
|
显示全部楼层
lim (√ x -√ 3 ) / [(x )(x-3)]
x->3
其实(x^2 - y^2)可以是(x - y)(x + y)。这个应该是common了。用这个就可以消除掉(x - 3)这一组了。
lim
x->1- |x^2 -1|/(x-1)
这个因为lim->1-的关系,做法也比较复杂点。记得别忽略modulus的function和application。(x - 1)可以被cancel掉,别忽略sign。 |
|
|
|
|
|
|
|
楼主 |
发表于 5-1-2010 10:51 PM
|
显示全部楼层
是x=0,3,和两个complex value?
四月一日的小皮 发表于 5-1-2010 10:19 PM
我也是算到2个complex values,但是答案给其中一个。
..
(x^2 -4x +1)^2 = x+1
这么做 |
|
|
|
|
|
|
|
楼主 |
发表于 5-1-2010 10:54 PM
|
显示全部楼层
lim (√ x -√ 3 ) / [(x )(x-3)]
x->3
其实(x^2 - y^2)可以是(x - y)(x + y)。这个应该 ...
四月一日的小皮 发表于 5-1-2010 10:35 PM
可以不要只是解释吗?能帮忙做吗?如果你这么解释我就会,那么我早就会了 |
|
|
|
|
|
|
|
发表于 5-1-2010 11:41 PM
|
显示全部楼层
fx=(x-1)(x-3), x<3
find value of x such that f(x)=f^-1(x)
f^-1(x) is inverse of fx
是不是x=0.6972? |
|
|
|
|
|
|
|
楼主 |
发表于 5-1-2010 11:47 PM
|
显示全部楼层
fx=(x-1)(x-3), x
Log 发表于 5-1-2010 11:41 PM
对啦,0.6972...
还有一个complex number为什么拒绝? |
|
|
|
|
|
|
|
发表于 5-1-2010 11:50 PM
|
显示全部楼层
for function and graph , we must always take REAL x values |
|
|
|
|
|
|
|
发表于 5-1-2010 11:54 PM
|
显示全部楼层
这题这样做,f(x)=f-1(x),if you sketch ,you will find that this two curves intersect at y=x .
thus,f(x)=f-1(x)=x
f(x)=x
x^2-4x+3=x
..... |
|
|
|
|
|
|
|
发表于 6-1-2010 12:13 AM
|
显示全部楼层
|
|
|
|
|
|
|
楼主 |
发表于 6-1-2010 12:14 AM
|
显示全部楼层
这题这样做,f(x)=f-1(x),if you sketch ,you will find that this two curves intersect at y=x .
thus, ...
Log 发表于 5-1-2010 11:54 PM
f-1x = surd x+1
fx=f-1x
then,
x^2 -4x +1 = surd x+1
(x^2-4x+1)^2 = x+1 .
应该是这样才对阿 |
|
|
|
|
|
|
|
发表于 6-1-2010 12:16 AM
|
显示全部楼层
f-1x = surd x+1
fx=f-1x
then,
x^2 -4x +1 = surd x+1
(x^2-4x+1)^2 = x+1 .
应该是这样 ...
白羊座aries 发表于 6-1-2010 12:14 AM
是什么答案?? |
|
|
|
|
|
|
| |
本周最热论坛帖子
|