|
楼主 |
发表于 22-2-2009 05:57 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 22-2-2009 08:36 PM
|
显示全部楼层
ivanlsy很有料的ho
去逻辑数学就知道了
不用急wo,以你的质素,没问题的,哈哈 |
|
|
|
|
|
|
|
发表于 22-2-2009 08:46 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 22-2-2009 09:09 PM
|
显示全部楼层
|
|
|
|
|
|
|
楼主 |
发表于 1-3-2009 06:43 PM
|
显示全部楼层
问个简单的问题:
Find the set of values of x for the following inequalities is valid.
x/(x+8)<=(smaller or equal)1/(x-1) |
|
|
|
|
|
|
|
发表于 2-3-2009 02:24 AM
|
显示全部楼层
原帖由 白羊座aries 于 1-3-2009 06:43 PM 发表
问个简单的问题:
Find the set of values of x for the following inequalities is valid.
x/(x + 8) ≤ 1/(x - 1)
x/(x + 8) ≤ 1/(x - 1)
x/(x + 8) - 1/(x - 1) ≤ 0
[x(x - 1) - (x + 8)] / [(x + 8)(x - 1)] ≤ 0
(x^2 - x - x - 8) / [(x + 8)(x - 1)] ≤ 0
(x^2 - 2x - 8) / [(x + 8)(x - 1)] ≤ 0
[(x - 4)(x + 2)] / [(x + 8)(x - 1)] ≤ 0
For the inequality above is valid, the numerator and denominator should have different sign.
Hence,
(x - 4)(x + 2) ≥ 0 when x ≤ -2 or x ≥ 4 --- 1
(x - 4)(x + 2) ≤ 0 when -2 ≤ x ≤ 4 --- 2
(x + 8)(x - 1) > 0 when x < -8 or x > 1 --- 3
(x + 8)(x - 1) < 0 when -8 < x < 1 --- 4
Combining the condition 1 and 4 and 2 and 3,
we get
-8 < x ≤ -2 and 1 < x ≤ 4.
Hence the set of values of x is -8 < x ≤ -2 and 1 < x ≤ 4.
[ 本帖最后由 Ivanlsy 于 2-3-2009 02:25 AM 编辑 ] |
|
|
|
|
|
|
|
楼主 |
发表于 2-3-2009 09:02 AM
|
显示全部楼层
原帖由 Ivanlsy 于 2-3-2009 02:24 AM 发表
x/(x + 8) ≤ 1/(x - 1)
x/(x + 8) - 1/(x - 1) ≤ 0
[x(x - 1) - (x + 8)] / [(x + 8)(x - 1)] ≤ 0
(x^2 - x - x - 8) / [(x + 8)(x - 1)] ≤ 0
(x^2 - 2x - 8) / [(x + 8)(x - 1)] ≤ 0
[(x - 4)(x + 2)] ...
明白到完,但是不明白这里
Combining the condition 1 and 4 and 2 and 3,
we get
-8 < x ≤ -2 and 1 < x ≤ 4.
多一题:
Show that x= 1-2i is a root of the equation x^3 - 3x^2 +7x -5=0.Hence , find all the roots of the equation.
完全没有idea.提示是给:Use @ (alpha) + B(Beta) + Y(Gamma) = -b/a
没有看过.. |
|
|
|
|
|
|
|
发表于 2-3-2009 11:22 AM
|
显示全部楼层
(x - 4)(x + 2) ≥ 0 when x ≤ -2 or x ≥ 4 --- 1
(x - 4)(x + 2) ≤ 0 when -2 ≤ x ≤ 4 --- 2
(x + 8)(x - 1) > 0 when x < -8 or x > 1 --- 3
(x + 8)(x - 1) < 0 when -8 < x < 1 --- 4
Combining the condition 1 and 4 and 2 and 3,
we get
-8 < x ≤ -2 and 1 < x ≤ 4
(x - 4)(x + 2) ≥ 0 when x ≤ -2 or x ≥ 4 --- 1
(x - 4)(x + 2) ≤ 0 when -2 ≤ x ≤ 4 --- 2
(x + 8)(x - 1) > 0 when x < -8 or x > 1 --- 3
(x + 8)(x - 1) < 0 when -8 < x < 1 --- 4
因爲我們需使分子和分母的正負號與對方相反,比如説分子為負時,分母須為正,這樣不等式才能成立。
情況1和4正是符合題意的情況,情況2和3亦然。
考慮情況1和4,我們知道當 x ≤ -2 或 x ≥ 4 時,分子為正。而當 -8 < x < 1 時,分母為負。
現在的問題是,當x在什麽範圍時,能使分子為正且分母為負?
你可以畫一條數軸 (Number line),來觀察以上問題的答案。 |
|
|
|
|
|
|
|
楼主 |
发表于 2-3-2009 12:00 PM
|
显示全部楼层
原帖由 Ivanlsy 于 2-3-2009 11:22 AM 发表
(x - 4)(x + 2) ≥ 0 when x ≤ -2 or x ≥ 4 --- 1
(x - 4)(x + 2) ≤ 0 when -2 ≤ x ≤ 4 --- 2
(x + 8)(x - 1) > 0 when x < -8 or x > 1 --- 3
(x + 8)(x - 1) < 0 when -8 < x < 1 --- 4
因爲 ...
还是不明白什么分子分母,根本就没有fraction在这里.
分母正,分子负就是等于negative了.我不明白到底要表达什么,
最后什么用number line,我也是不明白number line是如何操作
[ 本帖最后由 白羊座aries 于 2-3-2009 12:03 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 2-3-2009 12:14 PM
|
显示全部楼层
原帖由 白羊座aries 于 2-3-2009 09:02 AM 发表
Show that x= 1-2i is a root of the equation x^3 - 3x^2 +7x -5=0.Hence , find all the roots of the equation.
完全没有idea.提示是给:Use @ (alpha) + B(Beta) + Y(Gamma) = -b/a
Substitute x = 1 - 2i into the equation x^3 - 3x^2 + 7x - 5 = 0,
(1 - 2i)^3 - 3(1 - 2i)^2 + 7(1 - 2i) - 5 = 0
(-11 + 2i) - 3(-3 - 4i) + 7 - 14i - 5 = 0
-11 + 2i + 9 + 12i + 7 - 14i - 5 = 0
0 = 0
Since the equation valid, therefore x = 1 - 2i is a root of the equation x^3 - 3x^2 + 7x - 5 = 0.
let x = 1,
(1)^3 - 3(1)^2 + 7(1) - 5 = 0
0 = 0
Since the equation valid, 1 is the root of the equation.
Consider a cubic equation with α, β, γ are the roots of the equation.
(x - α)(x - β)(x - γ) = 0
x^3 - (α + β + γ)x^2 + (αβ + αγ + βγ)x - αβγ = 0
Compare with the general cubic equation ax^3 + bx^2 + cx + d = 0,
we get
α + β + γ = -b/a
αβ + αγ + βγ = c/a
αβγ = -d/a
let α, β, γ be the roots of equation x^3 - 3x^2 + 7x - 5 = 0
we get
α + β + γ = 3
we let α = 1 - 2i and β = 1,
1 - 2i + 1+ γ = 3
2 - 2i + γ = 3
γ = 1 + 2i
Hence, 1 - 2i, 1, and 1 + 2i are the roots of the equation.
[ 本帖最后由 Ivanlsy 于 2-3-2009 02:12 PM 编辑 ] |
|
|
|
|
|
|
|
楼主 |
发表于 2-3-2009 12:22 PM
|
显示全部楼层
原帖由 Ivanlsy 于 2-3-2009 12:14 PM 发表
Substitute x = 1 - 2i into the equation x^3 - 3x^2 + 7x - 5 = 0,
(1 - 2i)^3 - 3(1 - 2i)^2 + 7(1 - 2i) - 5 = 0
(-11 + 2i) - 3(-3 - 4i) + 7 - 14i - 5 = 0
-11 + 2i + 9 + 12i + 7 - 14i - 5 = 0
0 = ...
你怎样拿到-11+2i? |
|
|
|
|
|
|
|
楼主 |
发表于 2-3-2009 12:32 PM
|
显示全部楼层
α + β + (5/αβ) = 3
β + α + 5 = 3αβ
α + β + (5/αβ) = 3
multiply both side αβ
为什么是β + α + 5 = 3αβ而不是
α^2β + β^2 α +5=3αβ |
|
|
|
|
|
|
|
发表于 2-3-2009 12:35 PM
|
显示全部楼层
原帖由 白羊座aries 于 2-3-2009 12:00 PM 发表
还是不明白什么分子分母,根本就没有fraction在这里.
分母正,分子负就是等于negative了.我不明白到底要表达什么,
最后什么用number line,我也是不明白number line是如何操作
在inequality裏面不就有一個分數嗎?
因爲我們要讓inequality成立,所以分母和分子的正負號必須相反。
你還記得以前form 3 學過的inequality嗎?
那個有一個黑點和白點在一條Number line上面的那個。 |
|
|
|
|
|
|
|
楼主 |
发表于 2-3-2009 12:39 PM
|
显示全部楼层
我是不明白
Combining the condition 1 and 4 and 2 and 3,
we get
-8 < x ≤ -2 and 1 < x ≤ 4.
怎样combine?
还有,为什么会选1和4一组,2和3一组?
[ 本帖最后由 白羊座aries 于 2-3-2009 12:41 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 2-3-2009 12:58 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 2-3-2009 01:00 PM
|
显示全部楼层
回复 54# 白羊座aries 的帖子
因爲我們要分子和分母的正負號相反,所以選擇1和4,和2和3。 |
|
|
|
|
|
|
|
发表于 2-3-2009 01:05 PM
|
显示全部楼层
我有点不明白。为什么答案是1 - 2i, 2i, and 2
而不是1-2i,1,和1+2i呢??? |
|
|
|
|
|
|
|
发表于 2-3-2009 02:14 PM
|
显示全部楼层
回复 57# 苏纳怪 的帖子
因爲算錯~ |
|
|
|
|
|
|
|
发表于 2-3-2009 02:19 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 2-3-2009 02:27 PM
|
显示全部楼层
|
|
|
|
|
|
| |
本周最热论坛帖子
|