|
楼主 |
发表于 13-10-2009 06:28 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 13-10-2009 06:34 PM
|
显示全部楼层
回复 460# xoppoxin 的帖子
well ,since x²+6x+13 cannot be factorised into two real linear factors,then the rule Bx+C for this equation.DID I MAKE ME CLEAR?
也就是说,
= A /(x-1)+ Bx+C /(x²+6x+13)
so,like this la |
|
|
|
|
|
|
|
发表于 13-10-2009 07:03 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 15-10-2009 07:16 PM
|
显示全部楼层
我对intergaral这课有个疑惑,到底什么时候才用intergral by subtitution和intergral by partial fraction的呢?
我只会分得出intergral by part和in the form of f(x)^nf'(x)... |
|
|
|
|
|
|
|
发表于 15-10-2009 08:17 PM
|
显示全部楼层
原帖由 xoppoxin 于 15-10-2009 07:16 PM 发表
我对intergaral这课有个疑惑,到底什么时候才用intergral by subtitution和intergral by partial fraction的呢?
我只会分得出intergral by part和in the form of f(x)^nf'(x)...
如果有e^x,x,e^-2,sin x,1n x那些都是用integration by parts
integration by substitution我到现在还搞不清楚要怎样做的
integration by partial fraction就看它是不是fraction。。。。 |
|
|
|
|
|
|
|
发表于 15-10-2009 09:08 PM
|
显示全部楼层
回复 464# xoppoxin 的帖子
1.Integral by parts:when ∫ f(x) g(x) is a combination of two of these functions;INVERSE,LOGARITHMA,ALGEBRAIC,TRIGO.EXPONENT
2.Integral by partial fractions:when some rational (fractional) functions cannot 被expressed in the form of f'(x)/f(x) and unable to solve using formula ln f(x)+c,then you must put it in the form of partial fractions and then integral like normal.
3.integral by substitution:when you unable to integral a function using formula then use substitute method.
note:你可以去这找 http://malaysiaspeedmaths.forumo ... f9/topic-t6.htm#347 有关于integral by parts 的用法。 |
|
|
|
|
|
|
|
发表于 15-10-2009 09:09 PM
|
显示全部楼层
回复 464# xoppoxin 的帖子
对不起,如果我解释不大好的话 |
|
|
|
|
|
|
|
发表于 15-10-2009 09:45 PM
|
显示全部楼层
回复 466# Log 的帖子
谢谢!大概有一些头绪了,至少不会像之前那样蒙查查了,我再研究下你说的那些分别先。。 |
|
|
|
|
|
|
|
发表于 15-10-2009 11:27 PM
|
显示全部楼层
还有一个。。。
trapezium rule我也觉得很容易 |
|
|
|
|
|
|
|
发表于 19-10-2009 09:46 PM
|
显示全部楼层
回复 464# xoppoxin 的帖子
∫ (ln x)² dx
如这题,用到integration by substitution and by parts.
etc.let u = ln x and solve 。 |
|
|
|
|
|
|
|
发表于 20-10-2009 02:50 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 20-10-2009 09:37 PM
|
显示全部楼层
大家帮帮下!
1. If z=2-2i , show that 1/z+1/z*=i(1/z*-1/z)
2. Determine the value of a if (surd(3)-ai)/(1-surd(3)i) is a real number and find this real number
[ 本帖最后由 @影子@ 于 20-10-2009 10:18 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 20-10-2009 10:22 PM
|
显示全部楼层
回复 472# @影子@ 的帖子
1.z*是conjugate complex number...so,z* = 2+2i
接下来的你应该会做了吧?
2.surd的分母再乘一次(1+surd(3)i/(1+surd(3)i)《《《(对吗?) |
|
|
|
|
|
|
|
发表于 20-10-2009 11:06 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 21-10-2009 02:04 PM
|
显示全部楼层
If z=2-2i , show that 1/z+1/z*=i(1/z*-1/z)
1/z+1/z*
=1/(2-2i) + 1/(2+2i)
= -i^2/ i(-2i-2) + -i^2/ i(-2i+2)
= i/(2+2i) – i/(2-2i)
= i[1/(2+2i) – 1/(2-2i)]
=i(1/z*-1/z)
第2题let (surd(3)-ai)/(1-surd(3)i) = k
就可以solve了 |
|
|
|
|
|
|
|
发表于 21-10-2009 08:14 PM
|
显示全部楼层
回复 475# Allison 的帖子
原帖由 Allison 于 21-10-2009 02:04 PM 发表
If z=2-2i , show that 1/z+1/z*=i(1/z*-1/z)
1/z+1/z*
=1/(2-2i) + 1/(2+2i)
= -i^2/ i(-2i-2) + -i^2/ i(-2i+2)
= i/(2+2i) – i/(2-2i)
= i[1/(2+2i) – 1/(2-2i)]
=i(1/z*-1/z)
第2题let (surd(3)-ai)/(1-surd(3)i) = k
就可以solve了
谢谢你的教导!
现在又有新问题要大家帮忙了!
Using the method of completing the square, or otherwise, solve the equation.
z^2+4z=4-6i
Hence determine l z l and arg z |
|
|
|
|
|
|
|
发表于 21-10-2009 11:18 PM
|
显示全部楼层
回复 476# @影子@ 的帖子
z^2+4z=4-6i
let u=4-6i,
thus,z^2+4z=u
z^2+4z+(4/2)^2=u+(4/2)^2
(z+2)^2=u+4
=4-6i+4
=8-6i
then, =9-1-(2)(3)i
=9-(2)(3)i-1
=(3)^2-(2)(3)i+(-i)^2
(z+2)^2 =(3-i)^2
z+2=3-i
so, z=1-i
then,find the lzl and arg z........ |
|
|
|
|
|
|
|
楼主 |
发表于 21-10-2009 11:40 PM
|
显示全部楼层
z^2+4z=4-6i
thus,z^2+4z=4-6i
z^2+4z+(4/2)^2=4-6i+(4/2)^2
(z+2)^2=4-6i+4
=4-6i+4
=8-6i
z+2 = square root of 8-6i
let square root of 8-6i = a+bi
8-6i = a^2 -b^2 +2abi
compare 8 with a^2 - b^2
2ab with -6
.
.
. |
|
|
|
|
|
|
|
发表于 21-10-2009 11:49 PM
|
显示全部楼层
回复 478# 白羊座aries 的帖子
对,你的solution 才correct,整么我没想到的呢?
O(∩_∩)O谢谢啦 |
|
|
|
|
|
|
|
发表于 21-10-2009 11:55 PM
|
显示全部楼层
回复 479# Log 的帖子
懂哪一个是real part和imaginary part就可以做了~
说起来。。。我没有帮到忙 |
|
|
|
|
|
|
| |
本周最热论坛帖子
|