|
发表于 28-6-2009 06:18 PM
|
显示全部楼层
请帮忙
the equation x^3 - 8x + 3 = 0 has one integer root. Find this root and hence solve the equation completely.
我不知道它讲的solve equation completely是哪个…… |
|
|
|
|
|
|
|
发表于 28-6-2009 06:21 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 28-6-2009 06:28 PM
|
显示全部楼层
the equation x^3 - 8x + 3 = 0 has one[ integer root.] Find this root and hence solve the equation completely.
我不知道它讲的solve equation completely是哪个……
real or inteder root? |
|
|
|
|
|
|
|
发表于 28-6-2009 06:50 PM
|
显示全部楼层
回复 321# Elsiewang 的帖子
when x= -3,the eqn =0 .therefore the integer root is- 3.
then do fatorise of polynomial by divide (x+3),你就会拿x^2-3x+1,then use quadratic formula to solvex^2-3x+1
应该是这样了. |
|
|
|
|
|
|
|
发表于 28-6-2009 07:26 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 28-6-2009 10:29 PM
|
显示全部楼层
原帖由 cgcy 于 28-6-2009 04:48 PM 发表
3) An(A'nB)'=An(AuB')
= (AnA)u(AnB')
= Au(AnB')
= AuA, if A and B have no interception part
= A
红色那个部分不对
A n (A' n B)'
=A n (A U B')
=(A n A) U (A n B')
=A n (A U B')
=(没得再prove了吧? )
做么会是A勒? |
|
|
|
|
|
|
|
发表于 28-6-2009 10:36 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 28-6-2009 10:40 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 28-6-2009 10:41 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 28-6-2009 10:50 PM
|
显示全部楼层
回复 329# harry_lim 的帖子
哈哈!原来!我没注意到。。。好好的。。
你干嘛去factorise 咧?==|||
Algebraic laws of sets没有这种做法拉~== |
|
|
|
|
|
|
|
发表于 28-6-2009 10:58 PM
|
显示全部楼层
Algebraic laws of sets
a) A u A = A, A n A = A
b) (A u B) u C = A u (B u C),
(A n B) n C = A n (B u C)
c) A u B = B u A; A n B = B n A
d) A u (B n C) = (A u B) n (A u C),
A n (B u C) = (A n B) u (A n C)
e) A u Null set = A; A n Universal set = A
f) A u Universal set = Universal set; A n Null set= Null set
g) A u A' = Universal set; A n A' = Null set
h) (A')' = A; Universal set ' = Null set; Null set ' = Universal set
i) (A u B)' = A' n B'
(A n B)' = A' u B'
General rules
a) A - B = A n B'
b) A - (B u C) = (A - B) n (A - C)
c) A - (B n C) = (A - B) u (A - C) |
|
|
|
|
|
|
|
发表于 28-6-2009 11:03 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 29-6-2009 12:18 AM
|
显示全部楼层
因为 (A ∩ B') 是A的子集,所以 A ∩ (A ∩ B') = A。 |
|
|
|
|
|
|
|
发表于 29-6-2009 12:24 AM
|
显示全部楼层
其实,已经做对了。
An(A'nB)' =An(AuB')
= (AnA)u(AnB')
= Au(AnB')
= A
因为 (AnB')
所以,
An(A'nB)' =An(AuB')
= (AnA)u(AnB')
= Au(AnB')
= A proven
[ 本帖最后由 ~HeBe~_@ 于 29-6-2009 12:59 AM 编辑 ] |
|
|
|
|
|
|
|
发表于 29-6-2009 12:26 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 29-6-2009 12:28 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 29-6-2009 04:08 AM
|
显示全部楼层
其实可以不用diagram就能prove Au(AnB') = A
Au(AnB')=(AnU)u(AnB')
=An(UuB')
=AnU
=A
U=empty set |
|
|
|
|
|
|
|
发表于 29-6-2009 10:58 AM
|
显示全部楼层
原帖由 笨蛋一个 于 29-6-2009 04:08 AM 发表
其实可以不用diagram就能prove Au(AnB') = A
Au(AnB')=(AnU)u(AnB')
=An(UuB')
=AnU
=A
U=empty set
isn't that AnU= U if U is an empty set. |
|
|
|
|
|
|
|
发表于 29-6-2009 11:18 AM
|
显示全部楼层
回复 309# jien87 的帖子
3) An(A"nB)"=A
I have another proper solution..
An(A’nB)' = An (AuB')
= (AuO) n (AuB'), if O = empty set
= Au (O n B')
= Au O
= A |
|
|
|
|
|
|
|
发表于 29-6-2009 11:46 AM
|
显示全部楼层
原帖由 笨蛋一个 于 29-6-2009 04:08 AM 发表
其实可以不用diagram就能prove Au(AnB') = A
Au(AnB')=(AnU)u(AnB')
=An(UuB')
=AnU
=A
U=empty set
A =/= A n Null Set
Algebraic laws of sets
a) A u A = A, A n A = A
b) (A u B) u C = A u (B u C),
(A n B) n C = A n (B u C)
c) A u B = B u A; A n B = B n A
d) A u (B n C) = (A u B) n (A u C),
A n (B u C) = (A n B) u (A n C)
e) A u Null set = A; A n Universal set = A
f) A u Universal set = Universal set; A n Null set= Null set
g) A u A' = Universal set; A n A' = Null set
h) (A')' = A; Universal set ' = Null set; Null set ' = Universal set
i) (A u B)' = A' n B'
(A n B)' = A' u B' |
|
|
|
|
|
|
| |
本周最热论坛帖子
|