|
发表于 15-6-2009 11:07 PM
|
显示全部楼层
回复 300# Elsiewang 的帖子
你的p(x)一定要有一个value才能solve,所以要合在一起才能solve。 |
|
|
|
|
|
|
|
发表于 16-6-2009 08:07 PM
|
显示全部楼层
回复 301# 笨蛋一个 的帖子
你说的p(x)要有value才可以solve,就是要这样p(x)=6x^3-17x^2+4x+12?
[ 本帖最后由 Elsiewang 于 16-6-2009 08:08 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 16-6-2009 09:43 PM
|
显示全部楼层
回复 302# Elsiewang 的帖子
为什么p(x)=6x^3-17x^2+4x+12?
p(x)=x^3-x,p(x)=6x-6
so x^3-x=6x-6,然后找x |
|
|
|
|
|
|
|
发表于 17-6-2009 08:20 AM
|
显示全部楼层
回复 303# 笨蛋一个 的帖子
我是写contoh,跟那题没有关系。那题我只是要知道为什么要合在一起solve
p/s:不好意思,我没讲清楚……
[ 本帖最后由 Elsiewang 于 17-6-2009 08:29 AM 编辑 ] |
|
|
|
|
|
|
|
发表于 17-6-2009 11:06 AM
|
显示全部楼层
回复 304# Elsiewang 的帖子
对对,如果你的p(x)没有一个特定的值,你是不能找x的。
你不可以p(x)=6x-6,然后就说x=1,因为p(x)不一定等于0..... |
|
|
|
|
|
|
|
发表于 18-6-2009 09:31 PM
|
显示全部楼层
要问一题
When a polynomial f(x) is divided by x - 2 the remainder(R) is 7and when is divided by x - 1 the R is 5. Given that f(X) maybe written in the form (x-1)(x-2)Q(x)+ax+b,where Q(x) is a polynomial and a and b are constants. Find the remainder when f(x) id divided by (x-1)(x-2).
请大家帮忙谢谢(长人的题目来的) |
|
|
|
|
|
|
|
发表于 18-6-2009 09:52 PM
|
显示全部楼层
回复 306# 芭樂 的帖子
f(x)=(x-1)(x-2)Q(x)+ax+b
f(x) is divided by x - 2 the remainder(R) is 7
f(2)=2a+b=7
f(x) is divided by x - 1 the R is 5
f(1)=a+b=5
a=2, b=3
f(x)=(x-1)(x-2)Q(x)+2x+3
f(x) is divided by (x-1)(x-2)
remainder is 2x+3 |
|
|
|
|
|
|
|
发表于 18-6-2009 10:00 PM
|
显示全部楼层
回复 307# 笨蛋一个 的帖子
谢谢。
[ 本帖最后由 芭樂 于 18-6-2009 10:31 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 27-6-2009 04:40 PM
|
显示全部楼层
帮帮忙
prove
1)(B-C)u(C-B)=(BuC)n(BnC)"
2)(AuC)n(AuB")=A
3) An(A"nB)"=A
4)(A-B)u(B-A)=(A-B)-(AnB)
5)(AuB)"n[(AuC)-(BUC)]=empty set
6)(AnB)-(AnC)=An(B-C)
7)determine a=? if [square root of3-ai]/[1-(squqre of of 3)i] |
|
|
|
|
|
|
|
发表于 27-6-2009 09:38 PM
|
显示全部楼层
回复 309# jien87 的帖子
我来做第一题
(B n C) u (C - B)
= (B n C' ) u ( C n B')
=[(B n C') u C] n [(B n C') u B']
=[ C u (B n C') ] n [B' u (B n C')]
= (C u B) n (C u C') n (B' n B) n (B' u C')
= (C u B) n (B' u C')
= (B u C) n (B n C)' proven |
|
|
|
|
|
|
|
发表于 27-6-2009 11:24 PM
|
显示全部楼层
有几题难题想求各位高手帮忙。。。
2^(2x-1) - 9 * 2^x + 4 = 0
5^(2x) - 2^x = 0
find x
If y = a^x + b ,y = 4 when x = 1 and y = 2.5(fraction) when x = -1,find the possible value of y when x = 2
if log <a> N = x and log <b> N = y
prove that log <ab> N = (xy)/(x + y) |
|
|
|
|
|
|
|
发表于 28-6-2009 01:03 AM
|
显示全部楼层
回复 311# Razor_1130 的帖子
5^(2x) - 2^x = 0
5^(2x)=2^x
log[5^(2x)]=log[2^x]
2xlog5=xlog2
2xlog5-xlog2=0
x(2log5-log2)=0
x=0
|
|
|
|
|
|
|
|
发表于 28-6-2009 01:05 AM
|
显示全部楼层
2^(2x-1) - 9 * 2^x + 4 = 0
2^(-1) 2^(2x) - 9 * 2^x + 4 = 0
(2^x)^2 - 18 * 2^x + 8 = 0 (Both sides times 2)
By completing the square,
2^x = [18 +- sqrt ( 18^2 - 4(1)(8) ) ]/2
2^x = 9 +- 17.088
2^x = 26.088 , - 8.088
x log 2= 26.088 , - 8.088
x = 86.6625 , - 26.8678
-----------------------------
Q:
If y = a^x + b ,y = 4 when x = 1 and y = 2.5(fraction) when x = -1,find the possible value of y when x = 2
Solution:
When x=1, a + b = 4 => a = 4 - b --------------------1
When x=-1,a^(-1) + b = 2.5 => (4 - b)^(-1) + b = 2.5 -------------2
From 2, (4 - b)^(-1) + b = 2.5
------------------
2b^2 - 13b + 18 = 0
(2b - 9)(b - 2) = 0
b = 9/2 or 2
When b=9/2, a = 4 - b = -1/2
When b=2, a = 4 - b = 2
Therefore,
When x= 2, y = (-1/2) + 9/2 or 2^2 + 2
= 4/3/4 or 6 |
|
|
|
|
|
|
|
发表于 28-6-2009 03:35 PM
|
显示全部楼层
回复 309# jien87 的帖子
How to determine a if [square root of3-ai]/[1-(squqre of of 3)i] is not equal to something?? |
|
|
|
|
|
|
|
发表于 28-6-2009 03:55 PM
|
显示全部楼层
回复 310# ~HeBe~_@ 的帖子
(B n C) u (C - B)
= (B n C' ) u ( C n B')
How can (BnC) = (BnC‘)?? |
|
|
|
|
|
|
|
发表于 28-6-2009 04:02 PM
|
显示全部楼层
回复 311# Razor_1130 的帖子
if log <a> N = x and log <b> N = y
prove that log <ab> N = (xy)/(x + y)
log <a> N = x
N = a ^ x
a = N ^ (1/x) --------- (1)
log <b> N = y
N = b ^ y
b = N ^ (1/y) ------------ (2)
(1) multiply with (2), ab = N ^ (1/x +1/y)
ab = N ^ [(x+y)/(xy)]
(ab) ^ [(xy)/(x+y)]= N
log <ab> N = (xy)/ (x+y) |
|
|
|
|
|
|
|
发表于 28-6-2009 04:37 PM
|
显示全部楼层
原帖由 cgcy 于 28-6-2009 03:55 PM 发表
(B n C) u (C - B)
= (B n C' ) u ( C n B')
How can (BnC) = (BnC‘)??
我打错他的题目。
帮帮忙
prove
1)(B-C)u(C-B)=(BuC)n(BnC)"
2)(AuC)n(AuB")=A
3) An(A"nB)"=A
4)(A-B)u(B-A)=(A-B)-(AnB)
5)(AuB)"n[(AuC)-(BUC)]=empty set
6)(AnB)-(AnC)=An(B-C)
7)determine a=? if [square root of3-ai]/[1-(squqre of of 3)i]
正确的:
(B - C) u (C - B)
= (B n C' ) u ( C n B')
=[(B n C') u C] n [(B n C') u B']
=[ C u (B n C') ] n [B' u (B n C')]
= (C u B) n (C u C') n (B' n B) n (B' u C')
= (C u B) n (B' u C')
= (B u C) n (B n C)' proven |
|
|
|
|
|
|
|
发表于 28-6-2009 04:48 PM
|
显示全部楼层
回复 309# jien87 的帖子
3) An(A'nB)'=An(AuB')
= (AnA)u(AnB')
= Au(AnB')
= AuA, if A and B have no interception part
= A
[ 本帖最后由 cgcy 于 28-6-2009 04:51 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 28-6-2009 05:14 PM
|
显示全部楼层
回复 309# jien87 的帖子
6)(AnB)-(AnC)=(AnB)n (AnC)'
= (AnB)n(A'uC')
= [(AnB)nA']u[(AnB)nC']
= [(AnA')n(BnA')]u[(AnB)nC']
= [null set] u [An(BnC')]
= An(BnC')
= An(B-C) |
|
|
|
|
|
|
|
发表于 28-6-2009 06:05 PM
|
显示全部楼层
回复 314# cgcy 的帖子
对啊............................. |
|
|
|
|
|
|
| |
本周最热论坛帖子
|