|
发表于 29-4-2009 03:55 PM
|
显示全部楼层
原帖由 笨蛋一个 于 26/4/2009 12:27 AM
我不明白,为什么when r=r√(2)h?
题目有没有少一些东西?
我也不知道,题目只有给这些。。。 |
|
|
|
|
|
|
|
发表于 30-4-2009 01:07 AM
|
显示全部楼层
回复 220# Ivanlsy 的帖子
哦。。原来是这样。。谢谢你。。
我明白了。。 |
|
|
|
|
|
|
|
发表于 3-5-2009 02:41 AM
|
显示全部楼层
不好意思。。又是我啦。。
今天要问的问题是关于complex numbers 的。。
题目是:
If w= a+bi and z = x+yi, with a,b,x and y are real, are two complex numbers where w= z / (1 + zi), show that
a= x / [ x^2 + ( y - 1)^2 ] and b= - [ x^2 + y^2 - y ] / [ x^2 + ( y-1)^2 ]
我尝试prove了。。但是都拿不到。。可不可以麻烦大大们指点呢??谢谢 |
|
|
|
|
|
|
|
发表于 3-5-2009 12:46 PM
|
显示全部楼层
原帖由 bell_25 于 3-5-2009 02:41 AM 发表
If w= a+bi and z = x+yi, with a,b,x and y are real, are two complex numbers where w= z / (1 + zi), show that
a= x / [ x^2 + ( y - 1)^2 ] and b= - [ x^2 + y^2 - y ] / [ x^2 + ( y-1)^2 ]
w = z / (1 + zi)
= (x + yi) / [1 + (x + yi)i]
= (x + yi) / (1 + xi - y)
= [(x + yi) / (1 - y + xi)] × [(1 - y - xi)/(1 - y - xi)]
= [(x + yi)(1 - y - xi)] / [(1 - y + xi)(1 - y - xi)]
= [x - xy - (x^2)i + yi - (y^2)i + xy] / [(1 - y)^2 + x^2]
= [x - (x^2 - y + y^2)i] / [(1 - y)^2 + x^2]
= x / [(1 - y)^2 + x^2] - {(x^2 - y + y^2) / [(1 - y)^2 + x^2]}i
= x / [x^2 + (y - 1)^2] - { (x^2 + y^2 - y) / [x^2 + (y - 1)^2] }i --- [ (y - 1)^2 = (1 - y)^2 ]
= a + bi
Hence, a = x / [x^2 + (y - 1)^2] and b = - (x^2 + y^2 - y)/ [x^2 + (y - 1)^2] |
|
|
|
|
|
|
|
发表于 3-5-2009 04:53 PM
|
显示全部楼层
回复 224# Ivanlsy 的帖子
谢谢你。。。我明白了。。
不好意思。。我还有一题想发问。。
If (x + iy)^2 = x + iy, with x and y are real, find the possible values of x and y.
我的答案是。。
y=0, x=0,1
y= -1/4, x= 1/2
可是我换了另一个方法做是。。答案变成。。
y=0, x=1
到底怎样做哦。。麻烦指点。。谢谢。。 |
|
|
|
|
|
|
|
发表于 3-5-2009 05:23 PM
|
显示全部楼层
原帖由 bell_25 于 3-5-2009 04:53 PM 发表
If (x + iy)^2 = x + iy, with x and y are real, find the possible values of x and y.
(x + iy)^2 = x + iy
x^2 + 2xyi - y^2 = x + iy
x^2 - y^2 + 2xyi = x +yi
x^2 - y^2 = x
2xy = y
2xy - y = 0
y(2x - 1) = 0
y = 0 or x = 1/2
When y = 0,
x^2 - 0^2 = x
x^2 = x
x^2 - x = 0
x(x - 1) = 0
x = 0 or x = 1
When x = 1/2
(1/2)^2 - y^2 = 1/2
1/4 - y^2 = 1/2
y^2 = -1/2 (Not suitable)
Hence, x = 0, 1 and y = 0. |
|
|
|
|
|
|
|
发表于 3-5-2009 05:29 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 3-5-2009 05:29 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 3-5-2009 05:35 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 3-5-2009 05:39 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 3-5-2009 06:01 PM
|
显示全部楼层
回复 226# Ivanlsy 的帖子
哦。。我知道那里做错了。。谢谢。。
你真的很厉害。。这真的证明了年龄和智慧不能成正比的。。
你要好好加油。。继续为我们这群”迷途羔羊“解答问题。。哈哈。。
再一次。。谢谢你。。 |
|
|
|
|
|
|
|
发表于 3-5-2009 06:38 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 4-5-2009 12:21 AM
|
显示全部楼层
回复 232# Ivanlsy 的帖子
不会夸张啦。。相信很多人都有同感。。不要不好意思。。
嗯。。我认同。。
好的。。我会继续努力的。。 你也一样。。。 |
|
|
|
|
|
|
|
发表于 4-5-2009 01:57 PM
|
显示全部楼层
嗯。。老师给的作业有问题我solve不到 =.=
1. The complex no. z is given by
z = 1 + cos@ + i sin @ (@ = theta)
show that for all values of @, the point representing z in a Argand diagram is located on a circle. Find the centre and radius of the circle.
ans : centre(1,0) , radius =1
2. If z= x+ iy and Iz-1+iI = 2,show that x^2 + y^2 - 2x + 2y - 2 = 0
(so far,我只懂 x^2 + y^2 = 8-6i) |
|
|
|
|
|
|
|
发表于 4-5-2009 04:02 PM
|
显示全部楼层
原帖由 ccarljun91 于 4-5-2009 01:57 PM 发表
1. The complex no. z is given by
z = 1 + cos@ + i sin @ (@ = theta)
show that for all values of @, the point representing z in a Argand diagram is located on a circle. Find the centre and radius of the circle.
ans : centre(1,0) , radius =1
2. If z= x+ iy and Iz-1+iI = 2,show that x^2 + y^2 - 2x + 2y - 2 = 0
1. z = 1 + cosθ + isinθ
z - 1 = cosθ + isinθ
|z - 1| = √(cosθ)^2 + (sinθ)2
= √1
= 1
This show that the points representing z - 1 in the Argand diagram are located on a circle with center (0, 0) and radius 1 for all values of θ.
z - 1 is a linear transformation of z in the Argand diagram by moving all the points of z in the Argand diagram to the left with horizontal length of 1.
Hence the points representing z in the Argand diagram are located on a circle with center (1, 0) and radius 1 for all values of θ.
2. |z - 1 + i| = 2
|x + iy - 1 + i| = 2
|x - 1 + (y + 1)i| = 2
(x - 1)^2 + (y + 1)^2 = 2^2
x^2 - 2x + 1 + y^2 + 2y + 1 = 4
x^2 + y^2 - 2x + 2y + 2 - 4 = 0
x^2 + y^2 - 2x + 2y - 2 = 0 |
|
|
|
|
|
|
|
发表于 4-5-2009 09:10 PM
|
显示全部楼层
不会做=.=
3. a)Find the constant A such that for all real values of B,one of the roots of the equation 2x^3 + ax + 4 = b(x-2) is 2.
b) when a takes this values,find the set of values of b where the given equation has 3 real and distinct roots.
4. It is known that one of the roots of the equation 4x^3 + x +5 =0 is an integer.Find this root and write down a quadratic equation for the remaining roots. Find these remaining roots,expressing your answer in the form a+bi. By writing y=1/x, or using an alternative method,find the roots of the equation 5y^3 + y^2 +4 =0 giving the complex roots in the form a+bi
5. It is given that one of the roots of the equation 2x^3 + 6x^2 + 5x +2 = 0 is an integer.Find this root and hence,solve the equation above.
ps :paiseh,我已经做到答案了。。。但是既然打到这么辛苦。。你们有兴趣就做咯。。
[ 本帖最后由 ccarljun91 于 4-5-2009 10:06 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 10-5-2009 10:58 PM
|
显示全部楼层
讲到 paper 1..
江湖就传有一句话:文科生最怕试卷一;理科生最怕试卷二..keke
嗯..
还好啦嘻嘻..
这个是看个人的修为造诣及师长的教诲.. |
|
|
|
|
|
|
|
发表于 19-5-2009 06:25 PM
|
显示全部楼层
我想问。。
如果拉 y=|x-1|+|x-2| ,然后要画graph。
你们会怎样做?
我记得好像是 x-1 然后不知道什么symbol 然后0
然后 -x+1 然后不知道什么symbol 然后0
你们还记得什么symbol么? |
|
|
|
|
|
|
|
发表于 19-5-2009 11:54 PM
|
显示全部楼层
回复 238# meiling 的帖子
|x-1|={x>1, x-1
{x<1, -(x-1)
|x-2|={x>2, x-2
{x<2, -(x-2)
when, x>2 y=x-1+x-2
1<x<2 y=x-1-(x-2)
x<1 y=-(x-1)-(x-2) |
|
|
|
|
|
|
|
发表于 20-5-2009 12:37 PM
|
显示全部楼层
没有equal sign的哦?
今天考数学,还好没有出这种的。 |
|
|
|
|
|
|
| |
本周最热论坛帖子
|