|
发表于 19-4-2009 02:59 PM
|
显示全部楼层
回复 199# 无光的星星 的帖子
最近生病,没去注意
两种方法
i) 用differentiation,f'(Q)=0
ii) 画graph |
|
|
|
|
|
|
|
发表于 19-4-2009 04:50 PM
|
显示全部楼层
原帖由 笨蛋一个 于 19/4/2009 02:59 PM 发表
最近生病,没去注意
两种方法
i) 用differentiation,f'(Q)=0
ii) 画graph
你可以帮我检查那里错吗?
f'(Q)= -2sin 2Q
-2sin2Q = 0
sin2Q=0
2Q = sin^-1 (0)
2Q=0
Q=0
when Q=0, f(0)=cos 2(0) = 1
(0,1)
f(π/6)=cos 2( π/6) = 1/2
f(5π/6)=cos 2(5π/6) = 1/2
(0,1)
(π/6,1/2)
(5π/6,1/2)
therefore,1 is absolute maximum value ,1/2 is absolute minimum value
可是答案是-1,1/2 |
|
|
|
|
|
|
|
发表于 19-4-2009 06:23 PM
|
显示全部楼层
我不是很明白这问题。。所以要向你们求救了。。
题目是:
A pyramid with a square base is inscribed in a sphere of radius R. All the 5 vertices of the pyramid are touching the sphere. The height of the pyramid is x, show that the 4 vertices which form the base of the pyramid lie on a circle of radius r, where r^2 = 2Rx - ( x^2 ).
diagram 我知道怎样画,可是就是不知道要怎样show。。 |
|
|
|
|
|
|
|
发表于 19-4-2009 06:39 PM
|
显示全部楼层
原帖由 无光的星星 于 19-4-2009 04:50 PM 发表
你可以帮我检查那里错吗?
f'(Q)= -2sin 2Q
-2sin2Q = 0
sin2Q=0
2Q = sin^-1 (0)
2Q=0
Q=0
when Q=0, f(0)=cos 2(0) = 1
(0,1)
f(π/6)=cos 2( π/6) = 1/2
f(5π/6)=cos 2(5π/6) = 1/2
(0 ...
2Q=sin^-1(0)
2Q=0, pi, 2pi, 3pi....
Q=0, pi/2, pi, 3/2pi
因为Q的range是(pi/6, 5/6pi)
Q=pi/2
.
.
原帖由 bell_25 于 19-4-2009 06:23 PM 发表
我不是很明白这问题。。所以要向你们求救了。。
题目是:
Apyramid with a square base is inscribed in a sphere of radius R. Allthe 5 vertices of the pyramid are touching the sphere. The height ofthe ...
用theorem pythagorus.
在这里我不知道要酱表达
大概的做法是let a=x-R
R^2=r^2+a^2
.
.
. |
|
|
|
|
|
|
|
发表于 19-4-2009 08:19 PM
|
显示全部楼层
原帖由 笨蛋一个 于 19/4/2009 06:39 PM 发表
2Q=sin^-1(0)
2Q=0, pi, 2pi, 3pi....
Q=0, pi/2, pi, 3/2pi
因为Q的range是(pi/6, 5/6pi)
为什么你会知道有那么多答案的? |
|
|
|
|
|
|
|
发表于 19-4-2009 08:22 PM
|
显示全部楼层
回复 204# 笨蛋一个 的帖子
我知道要用到pythagoras theorem..
可是我不知道要怎样show vertices lie on the circle...
vertices又不是line...要怎样show呢?
可不可以麻烦你告诉我呢?
我好blur。。。 |
|
|
|
|
|
|
|
发表于 19-4-2009 08:53 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 19-4-2009 08:57 PM
|
显示全部楼层
回复 207# 笨蛋一个 的帖子
哦。。原来我误解了。。
谢谢你。。
我会尝试解答这个问题。。 |
|
|
|
|
|
|
|
发表于 19-4-2009 09:07 PM
|
显示全部楼层
回复 207# 笨蛋一个 的帖子
我想我明白了,是跟以前f4f5学过的sin,tan,cos的graph对不对? |
|
|
|
|
|
|
|
发表于 19-4-2009 09:12 PM
|
显示全部楼层
不好意思。。我突然又有问题了。。。
这个问题其实是叫我们prove什么?
prove 那个圆圈的半径是r..
还是r^2 = 2Rx - ( x^2 )呢??
还有。。问什么你要let a=x-R??
不好意思。。希望没把你问倒。。。 |
|
|
|
|
|
|
|
发表于 23-4-2009 06:08 PM
|
显示全部楼层
又有一题不会做。。
a right circular cone has base radius r and height h. As r and h vary, its curved surface area is kept constant. Show that its volume is a maximum when r=r√(2)h. |
|
|
|
|
|
|
|
发表于 25-4-2009 11:32 PM
|
显示全部楼层
请问谁能帮我解答? |
|
|
|
|
|
|
|
发表于 26-4-2009 12:27 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 28-4-2009 12:13 AM
|
显示全部楼层
回复 213# 笨蛋一个 的帖子
好的。。谢谢你。。我会再尝试。。
这里又有一题我不是很确定。。。
题目是
The equation x^2 + ax + b = 0 has roots α and β. Find the two roots of the equation 4bx^2 + 2ax + 1 = 0 in terms of α and β.
我的solution(大略)是:
Given that α and β are the roots of x^2 + ax + b = 0.
hence,
α+β= -a
αβ = b
4bx^2 + 2ax + 1 = 0
x
= [ (-2a) ± √ ( (2a)^2 - 4(4b)) ] / 2(4b)
= [ (-2a) ± (√ 2 ) (√ a^2 - 4b) ] / 8b
= [ (-2α+β) ± (√ 2 ) (√ (α+β)^2 - 4(αβ)) ] / 8(αβ)
= [ 2(α+β) ± (√ 2 )(α-β) ] / 8(αβ)
= [ 2(α+β) + (√ 2 )(α-β) ] / 8(αβ) , [ 2(α+β) - (√ 2 )(α-β) ] / 8(αβ)
The roots of the equation 4bx^2 + 2ax + 1 = 0 are
[ 2(α+β) + (√ 2 )(α-β) ] / 8(αβ) and [ 2(α+β) - (√ 2 )(α-β) ] / 8(αβ)
这样对吗?我总觉得怪怪的。。
麻烦指点哦。。谢谢。。。 |
|
|
|
|
|
|
|
发表于 28-4-2009 12:25 AM
|
显示全部楼层
原帖由 bell_25 于 28-4-2009 12:13 AM 发表
The equation x^2 + ax + b = 0 has roots α and β. Find the two roots of the equation 4bx^2 + 2ax + 1 = 0 in terms of α and β.
Since x^2 + ax + b = 0 has roots α and β, therefore
α + β = -a
αβ = b
4bx^2 + 2ax + 1 = 0
x^2 + (2a/4b)x + 1/(4b) = 0
x^2 - (-a/2b)x + 1/(4b) = 0
x^2 - [(α + β)/(2αβ)]x + 1/(4αβ) = 0
x^2 - [(1/2β) + 1/(2α)]x + [1/(2α)][1/(2β)] = 0
Hence, the roots of the equation are 1/(2α) and 1/(2β)。
[ 本帖最后由 Ivanlsy 于 28-4-2009 12:26 AM 编辑 ] |
|
|
|
|
|
|
|
发表于 28-4-2009 12:27 AM
|
显示全部楼层
回复 215# Ivanlsy 的帖子
对哦。。我怎么没想到要这样解答呢。。
谢谢你。。。感激不尽。。。 |
|
|
|
|
|
|
|
发表于 28-4-2009 12:28 AM
|
显示全部楼层
回复 214# bell_25 的帖子
x
= [ (-2a) ± √ ( (2a)^2 - 4(4b)) ] / 2(4b)
= [ (-2a) ± 2 (√ a^2 - 4b) ] / 8b
= [2(α+β) ± 2 (√ (α+β)^2 - 4(αβ)) ] / 8(αβ)
= [2(α+β) ± 2 (α-β) ] / 8(αβ)
= 1/(2β), 1/(2α) |
|
|
|
|
|
|
|
发表于 28-4-2009 09:32 PM
|
显示全部楼层
回复 217# iamverynoob 的帖子
哦。。谢谢你。。
原来我又是犯上粗心的毛病。。 |
|
|
|
|
|
|
|
发表于 28-4-2009 09:39 PM
|
显示全部楼层
再来一题。。
If α and β are the roots of the equation x^2 + px + q = 0, show that p and q are the roots of the equation x^2 + (α+β-αβ)x - (αβ)(α+β) = 0.
Find the non-zero values of p and q if the roots of the second equation are
(a)α and β
(b)α^2 and β^2
问题的第一部分。。If α and β are the roots of the equation x^2 + px + q = 0, show that p and q are the roots of the equation x^2 + (α+β-αβ)x - (αβ)(α+β) = 0.。。。我会做。。可是。。接下来的我都毫无头绪。。可以指点我吗??谢谢。。。 |
|
|
|
|
|
|
|
发表于 28-4-2009 11:33 PM
|
显示全部楼层
原帖由 bell_25 于 28-4-2009 09:39 PM 发表
If α and β are the roots of the equation x^2 + px + q = 0, show that p and q are the roots of the equation x^2 + (α+β-αβ)x - (αβ)(α+β) = 0.
Find the non-zero values of p and q if the roots of the second equation are
(a)α and β
(b)α^2 and β^2
x^2 + (α + β - αβ)x - (αβ)(α + β) = 0
x^2 + (-p - q)x - (q)(-p) = 0
x^2 - (p + q)x + pq = 0
Hence p and q are the roots of the equation.
When the roots of the second equation are
(a) α and β
p + q = α + β
= -p
q = -2p
pq = αβ
= q
p = 1
When p = 1,
q = -2(1)
= -2
Hence p = 1, q = -2.
(b) α^2 and β^2
p + q = α^2 + β^2
= (α + β)^2 - 2αβ
= p^2 - 2q
pq = (α^2)(β^2)
= (αβ)^2
= q^2
p = q
When p = q,
p + q = p^2 - 2q
p + p = p^2 - 2p
p^2 - 4p = 0
p(p - 4) = 0
p = 0 (Not suitable) or p = 4
Hence p = 4.
Since p = q,
therefore q = 4.
p = 4, q = 4. |
|
|
|
|
|
|
| |
本周最热论坛帖子
|