5. Find the number of integers N satisfying the following conditions: (i) 1 ≤ N ≤ 2013. (ii) the last digit of N^99 is equal to the last digit of N.
求满足下列条件的整数 N 的个数: (i) 1 ≤ N ≤ 2013。 (ii) N^99 的个位数数字与 N 的个位数数字相同。 1^n:1,1,1,1,1,1,1,1,... ... 2^n:2,4,8,6,2,4,8,6,... ... 3^n:3,9,7,1,3,9,7,1,... ... 4^n:4,6,4,6,4,6,4,6,... ... 5^n:5,5,5,5,5,5,5,5,... ... 6^n:6,6,6,6,6,6,6,6,... ... 7^n:7,9,3,1,7,9,3,1,... ... 8^n:8,4,2,6,8,4,2,6,... ... 9^n:9,1,9,1,9,1,9,1,... ... 0^n:0,0,0,0,0,0,0,0,... ... 99 = 4×24 + 3 若 N 的个位数数字为 1,4,5,6,9,0,则 N^99 的个位数数字与 N 的个位数数字相同。 ∴ 满足条件的 N 有 6×201 + 1 = 1207 个。 |