查看: 1455|回复: 7
|
Integration
[复制链接]
|
|
帮忙解下...
If r=3/5 , find the least integral value of n for which ∫ [(r^n)/(1-r)] is less than 0.0001.
谢谢啊 |
|
|
|
|
|
|
|
发表于 19-2-2011 07:31 PM
|
显示全部楼层
integrate respect to r 还是 n? |
|
|
|
|
|
|
|
楼主 |
发表于 19-2-2011 08:17 PM
|
显示全部楼层
|
|
|
|
|
|
|
楼主 |
发表于 19-2-2011 08:25 PM
|
显示全部楼层
知道解答了
不过还是谢谢 我把它复杂化了 |
|
|
|
|
|
|
|
楼主 |
发表于 21-2-2011 12:52 AM
|
显示全部楼层
还有一题..
If y = a^[1/(1-log(a) x)] and z = a^[1/(1-log(a) y] ,
show that x = a^[(1/(1-log(a) z] |
|
|
|
|
|
|
|
发表于 21-2-2011 03:16 AM
|
显示全部楼层
|
|
|
|
|
|
|
楼主 |
发表于 21-2-2011 08:54 PM
|
显示全部楼层
谢谢啊 早上也解到了
还有的就是
已知f(x)=ax^2+bx+c . 如果f(x+1)-f(x)=2x , 且以x-2 除f(x)所得余式是-3 , 则 a + b + c =? |
|
|
|
|
|
|
|
发表于 22-2-2011 12:38 AM
|
显示全部楼层
谢谢啊 早上也解到了
还有的就是
已知f(x)=ax^2+bx+c . 如果f(x+1)-f(x)=2x , 且以x-2 除f(x)所得余式 ...
soulcrying 发表于 21-2-2011 08:54 PM
其实也只是 express and substitute 而已。。。楼主只要懂得 express unknown in terms of quadratic formula form 就可以了。。
Given f(x)=ax^2+bx+c
so f(x+1) = a(x+1)^2 + b(x+1) + c
= ax^2 +(2a+b)x + (1+b+c)
f(x+1)-f(x)=2x
-> ax^2 +(2a+b)x + (1+b+c) - [ax^2+bx+c]
= 2ax + 1 + b
= 2x
comparing the coefficient:
2ax = 2x -> a=1
1 + b = 0 -> b = -1
when f(x) divided by (x-2), we get remainder = -3 . Using Long division method
ax+(2a+b)
x-2 )------------------
ax^2 + bx + c
ax^2 - 2ax
-----------------
(2a+b)x + c
(2a+b)x -2(2a+b)
----------------------------
c + 2(2a+b)
c + 2(2a+b) = -3
c + 2(2(1) + (-1)) = c + 2(1) = -3
c = -5
Hence, a + b + c = 1 - 1 -5 = -5 |
|
|
|
|
|
|
| |
本周最热论坛帖子
|