查看: 1792|回复: 1
|
integration and differentiation
[复制链接]
|
|
1. If z = 2xy + x -xf(y/x), where f is a differentiable function , show that x dz/dx + y dz/dy = z + 2xy . 2. Evaluate the following integrals:
(a) Integral x/ (x^3 + 27) dx (b) Integral (x + 3) / sqrt(x^2 + 2x - 10 ) dx
3. If Fn= Integral cot^n x dx ( n > 1 ), show that Fn = - (cot^n - 1 x / n - 1) - Fn-2 . Hence , determine F5. |
|
|
|
|
|
|
|
发表于 8-7-2012 11:29 AM
|
显示全部楼层
1. If z = 2xy + x -xf(y/x), where f is a differentiable function , show that x dz/dx + y dz/dy = z + ...
白羊座aries 发表于 4-7-2012 03:24 PM
1. z=2xy+x-xf(y/x)
f(y/x)=2y+1-(z/x)
dz/dx=2y+1-{x[f'(y/x)][-y/x^2]+f(y/x)]
dz/dx=2y+1+(y/x)f'(y/x)-f(y/x)
dz/dy=2x-x[f'(y/x)][1/x]
dz/dy=2x-f'(y/x)
f'(y/x)=2z-dz/dy
dz/dx=2y+1+(y/x)(2z-dz/dy)-[2y+1-(z/x)]
x(dz/dx)+y(dz/dy)=z+2xy
2(a) ∫x/(x^3+27) dx
=∫[(x+3)/(9(x^2-3x+9)) - 1/(9(x+3))] dx
=∫[(x-3/2)/(9(x^2-3x+9))+1/(2(x^2-3x+9)) - 1/(9(x+3))] dx
=(1/18)ln(x^2-3x+9)+[(√3)/9]arctan[(2x-3)/(3√3)]-(1/9)ln|x+3|+C
2(b) ∫(x+3)/√(x^2+2x-10) dx
=∫(x+1)/√(x^2+2x-10) dx + ∫2/√(x^2+2x-10) dx
=√(x^2+2x-10) + ∫2/√[(x+1)^2-11] dx
for ∫2/√[(x+1)^2-11] dx, Let x+1=(√11) sec u, dx=(√11)tan u sec u du
∫2/√[(x+1)^2-11] dx=∫2/√[(11sec^2 u)-11] (√11)tan u sec u du
=2∫ sec u du
=2ln|sec u +tan u|+C
=2ln|x+1+x^2+2x-10|-ln(11)+C
∫(x+3)/√(x^2+2x-10) dx=√(x^2+2x-10)+2ln|x+1+√(x^2+2x-10)|+C
3. F_n=∫cot^n x dx ( n > 1 )
F_n=∫[(cos x)/(sin^n x)]cos^(n-1) x dx
Let u=cos^(n-1) x dv/dx=(cos x)/(sin^n x)
du/dx=-(n-1)[cos^(n-2) x][sin x] v=1/(1-n)[1/sin^(n-1) x]
F_n=∫[(cos x)/(sin^n x)]cos^(n-1) x dx
F_n=[cos^(n-1) x]/(1-n)[1/sin^(n-1) x]-∫{1/(1-n)[1/sin^(n-1) x]}{-(n-1)[cos^(n-2) x][sin x]} dx
F_n=[-1/(n-1)][cot^(n-1) x]-∫cot^(n-2) x dx
F_n=[-1/(n-1)][cot^(n-1) x]-F_(n-2)
F_5自己找 |
|
|
|
|
|
|
| |
本周最热论坛帖子
|