查看: 3284|回复: 29
|
Euler Method的问题...
[复制链接]
|
|
Y=X^2+Y,X=0.1,0.2,0.3,0.5 and 1..Y = -1 when X = 0,h = 0.1
要用euler method,modified euler 和runge kutta method找出来..怎么弄??我到现在还不了解这些算法... |
|
|
|
|
|
|
|
发表于 30-10-2011 10:15 AM
|
显示全部楼层
Y=X^2+Y
x^2=0
x=0
題目有問題吧! |
|
|
|
|
|
|
|
楼主 |
发表于 30-10-2011 10:39 AM
|
显示全部楼层
Y=X^2+Y
x^2=0
x=0
題目有問題吧!
puangenlun 发表于 30-10-2011 10:15 AM
哦..问题是说when X = 0,Y = -1..没错的话,X过后要replace为0.1,0.2....等等的..
要做10个step..怎么弄... |
|
|
|
|
|
|
|
发表于 30-10-2011 11:17 AM
|
显示全部楼层
現在問題是
無論y是多少
x都是0
通常euler method的題目
都有牽涉到dy/dx
你確定題目沒有錯嗎? |
|
|
|
|
|
|
|
楼主 |
发表于 30-10-2011 02:14 PM
|
显示全部楼层
現在問題是
無論y是多少
x都是0
通常euler method的題目
都有牽涉到dy/dx
你確定題目沒有錯嗎?
puangenlun 发表于 30-10-2011 11:17 AM
没错..全部题目是这样的...
tabulate the solution of Y = X^2 + Y at X = 0.1,0.2,0.3,0.5 and 1.0.given that Y = -1 when X = 0.Use the euler method,modified euler method and runge kutta method choosing h = 0.1.compare the result. |
|
|
|
|
|
|
|
发表于 30-10-2011 05:55 PM
|
显示全部楼层
In mathematics and computational science, the Euler method, named after Leonhard Euler, is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. It is the most basic kind of explicit method for numerical integration of ordinary differential equations and is the simplest kind of Runge-Kutta method.
這些方法都是solve ode的
所以我認為題目有問題 |
|
|
|
|
|
|
|
楼主 |
发表于 30-10-2011 06:13 PM
|
显示全部楼层
In mathematics and computational science, the Euler method, named after Leonhard Euler, is a first-o ...
puangenlun 发表于 30-10-2011 05:55 PM
很深奥,什么叫做solve ode |
|
|
|
|
|
|
|
楼主 |
发表于 30-10-2011 06:16 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 30-10-2011 06:41 PM
|
显示全部楼层
Euler method is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value
ode=ordinary differential equations
什麼課程的assignment? |
|
|
|
|
|
|
|
楼主 |
发表于 30-10-2011 06:48 PM
|
显示全部楼层
Euler method is a first-order numerical procedure for solving ordinary differential equations (ODEs) ...
puangenlun 发表于 30-10-2011 06:41 PM
engineering mathematics....你也有读degree的?? |
|
|
|
|
|
|
|
发表于 30-10-2011 07:37 PM
|
显示全部楼层
|
|
|
|
|
|
|
楼主 |
发表于 30-10-2011 07:48 PM
|
显示全部楼层
oic,怪不得
puangenlun 发表于 30-10-2011 07:37 PM
怎么说??? |
|
|
|
|
|
|
|
发表于 30-10-2011 07:51 PM
|
显示全部楼层
一般上engineering的course才會學到這個
business的就不一定會學到這個 |
|
|
|
|
|
|
|
楼主 |
发表于 30-10-2011 08:06 PM
|
显示全部楼层
一般上engineering的course才會學到這個
business的就不一定會學到這個
puangenlun 发表于 30-10-2011 07:51 PM
恩..engineering都学怪怪的东西的
这个真的没办法解?? |
|
|
|
|
|
|
|
发表于 31-10-2011 11:03 AM
|
显示全部楼层
當你還在學校的時候,這些知識真的是怪怪的
但是實際應用在工作的時候,可能會人命關天
題目的解答在二樓 |
|
|
|
|
|
|
|
楼主 |
发表于 31-10-2011 01:12 PM
|
显示全部楼层
當你還在學校的時候,這些知識真的是怪怪的
但是實際應用在工作的時候,可能會人命關天
題目的解答在二 ...
puangenlun 发表于 31-10-2011 11:03 AM
还真的没办法解 |
|
|
|
|
|
|
|
发表于 10-1-2012 02:05 AM
|
显示全部楼层
本帖最后由 yipei 于 10-1-2012 02:46 AM 编辑
回复 1# harke86
In mathematics and computational science, the Euler method, named after Leonhard Euler, is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. It is the most basic kind of explicit method for numerical integration of ordinary differential equations and is the simplest kind of Runge-Kutta method.
這些方法都是solve ode的
所以我認為題目有問題
题目没问题,ODE 是用 f'(x) 来算 value of f(x) in case of some problem can't to solve by using integration.
question :
y'=x^2 + y
at x=0.1, 0.2, 0.3, 0.5 and 1.0given y=-1 when x=x=0
if the question is y=x^2 + y, then you can solve by ODE because you already get the formula for f(x)
so you question given must be y'=x^2 + y but not y, because Euler, Runge - Kutta are solve the (ODE) problem from y'(x) to get estimated value of y but not solve from y(x) to get value of y, it is impossible.....
Euler method:
y1=y+f(x,y)(x-xo)
at x=0.1
y=-1 + f(0,-1)(0.1-0)
= -1.1
at x=0.2
y = -1.1 + f(0.1,-1.1)(0.2-0.1)
= -1.209
at x=0.3
y=-1.3259
at x=0.4
y= -1.44949
at x=0.5
y = -1.5784
and continue to use same formula to find to estimate value of f(x) |
|
|
|
|
|
|
|
发表于 10-1-2012 02:16 AM
|
显示全部楼层
本帖最后由 yipei 于 10-1-2012 02:40 AM 编辑
回复 16# harke86
modified euler method (Runge-Kutta one step method)
K1 = f(x, y)
K2 = f(x + 1/2 * h , y + 1/2 * h * K1)
y1 = y + h * K2
at x=0.1
K1 = f(0,-1) = -1
K2 = f(0+1/2 * 0.1 , -1+ 1/2 * 0.1 * -1) = -1.0475
y = -1 + 0.1 ( -1.0475) = --1.10474
at x=0.2
K1 = -1.09474
K2 = -1.136977
y = -1.2184377
at x=0.3
K1 = -1.1784377
K2 = -1.214859585
y = -1.339923659
at x = 0.4
K1 = -1.249923659
K2 = -1.199919842
y= -1.459915643
at x = 0.5
K1 = -1.299915643
K2 = -1.322411425
y= -1.592156786
.
.
.
.
.
.
and continue to use the same formula to estimate the value of f(x)..... |
|
|
|
|
|
|
|
发表于 10-1-2012 02:22 AM
|
显示全部楼层
回复 16# harke86
Runge-Kutta Method: (2 stage method)
K1 = f(x,y)
K2 = f(x+2/3 * h, y + 2/3 *h * K1)
y1 = y + h(1/4 K1 + 3/4 K2)
at x=0.1
K1 = -1.0
K2 = -1.06
y = -1.1045
at x= 0.2
K1= -1.0945
K2 = -1.14969
y = -1.218
at x= 0.3
K1=-1.178
K2= -1.2254
y = -1.3394
at x= 0.4
K1= -1.249357
K2=-1.288246
y = -1.467252
at x=0.5
K1 = -1.307252
K2 = -1.336624
y = -1.60018
。。。。。。。。。。。。。
。。。。。。。。。。。
。。。。。。。。。。。
。。。。。。。。。。。
。。。。。。。。。。。。 |
|
|
|
|
|
|
|
发表于 10-1-2012 02:29 AM
|
显示全部楼层
回复 16# harke86
我不知道你的 Runge-Kutta 是多少 stage, 所以我用 2 stage 的,也叫 Heun Method.Classical Runge-Kutta Method 有 4 stage...
方法一样,只是 formula 不同:
K1 = f(x,y)
K2 = f(x+1/2 *h , y+ 1/2 *h *K1)
K3 = f(x+1/2 *h , y+ 1/2 *h *K2)
K4 = f(x+ h , y + h * K3)
y1 = y + h/6 * ( K1 + 2 * K2 + 2 * K3 + K4)
The answer will be the same, just the got a little bit different, but when you round of your answer, you will be get the same answer although you are using different method
Runge-Kutta 4 stage(Classical) will get the more accurate answer,
then the following method that get accurate answer is by using Heun Method (R-K 2 stage),
then is the modified euler method(R-K 1 stage) and then is using Euler method.... |
|
|
|
|
|
|
| |
本周最热论坛帖子
|