查看: 109043|回复: 2957
|
数学Paper 1讨论专区
[复制链接]
|
|
chapter 1,
帮我一个example 下.
1.using the laws of algebra for sets show that for any sets A and B
a) ( A n B)' n A = B' n A
我做到:
A' u B' n A ..然后就停了,我觉得我错了,但是全部law中,只有De morgan's law 有compliment
2.If log4(base) N=p and log12(base) N = q ,show that
log3(base) 48=p+q/p-q
不会这题
3.Find the roots of the equation e^(2-2x) =2e^-x ,giving your answer in terms of logarithm.完全不会,答案对我来说也很特别.
Ans:2-In 2
4.Given a=14[1-(1/2)^x] and b=14 find the set of values of x such that the difference between a and b is less than 0.01,giving your answer correct to 2 d.p
_________
5. / __
/ 59-24/6 express as p square root 2 + q square root 3 where p and q are integer .由于太多square root,希望你们能明白.那题是 square root of 59-24square root of 6.
6.我不知道那里错.
express (1+i/1-2i) in form a+ib
(1+i/1-2i) x (1+2i/1+2i)
=(1+i)(1+2i)/(1-2i)(1+2i)
=(1-2i+i+2)/5
=(3-i)/5
=3/5 - 1/5 i
a=3/5 b = -1/5
但是答案和我相反 a= -1/5 b=3/5
然后arg怎样算啊?很乱下..为什么有些example是 pie - tan ^-1
7.z1 = 2+i ,z2= 2-i,z3= -1+2i .find modulus and argument
z3/z1
我是这样做:
(-1+2i)/(2+i) = (-1+2i )(2-i)/(2+i)(2-i)
=(-2+i+4i+2)/5
=5i/5
= i
不对咩?
答案是 1 , pie /2
早餐先,等下再战,晚上我要去旅行了啦....会的希望帮忙回答.谢谢
[ 本帖最后由 猪头鱼 于 2-5-2009 08:47 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 22-2-2009 11:19 AM
|
显示全部楼层
a) ( A n B)' n A = B' n A
(A n B)' n A
=(A' U B') n A [de morgan law]
=(A' U A) n (B' n A) [commutative law] <<<應該是這個law瓜?
= Universal n (B' n A)
= B' n A (proved) |
|
|
|
|
|
|
|
发表于 22-2-2009 11:21 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 22-2-2009 11:51 AM
|
显示全部楼层
express (1+i/1-2i) in form a+ib
= (1+i) / (1-2i) X (1+2i) / (1+2i)
= (1 + 2i + i + 2i^2) / (1 + 2i - 2i - 4i^2)
= (1 + 3i - 2) / (1+4)
= (3i - 1) / 5
= 3/5i - 1/5
a = -1/5 , b = 3/5 |
|
|
|
|
|
|
|
发表于 22-2-2009 12:37 PM
|
显示全部楼层
原帖由 白羊座aries 于 22-2-2009 11:13 AM 发表
If log4(base) N=p and log12(base) N = q ,show that
log3(base) 48=p+q/p-q
log_4 N = p
N = 4^p
(log_12 N) = q
N = 12^q
4^p = 12^q
plog_3 4 = qlog_3 12
plog_3 4 = q[(log_3 4) + 1]
p(log_3 4) - q(log_3 4) = q
(log_3 4)(p - q) = q
log_3 4 = q/(p - q) --- 1
4^p = 12^q
(12/3)^p = 12^q
12^p / 12^q = 3^p
12^(p - q) = 3^p
(p - q)log_3 12 = p
log_3 12 = p/(p - q) --- 2
1 + 2:
log_3 4 + log_3 12 = q/(p - q) + p/(p - q)
log_3 48 = (p + q)/(p - q) |
|
|
|
|
|
|
|
发表于 22-2-2009 12:46 PM
|
显示全部楼层
原帖由 白羊座aries 于 22-2-2009 11:13 AM 发表
3.Find the roots of the equation e^(2-2x) =2e^-x ,giving your answer in terms of logarithm.完全不会,答案对我来说也很特别.
Ans:2-In 2
e^(2 - 2x) = 2(e^-x)
(e^2) / (e^2x) = 2 / (e^x)
e^2 = 2(e^x)
e^x = (e^2) / 2
x ln e = ln [(e^2) / 2]
x = 2ln e - ln 2
x = 2 - ln2
* ln = log_e |
|
|
|
|
|
|
|
楼主 |
发表于 22-2-2009 12:48 PM
|
显示全部楼层
原帖由 Ivanlsy 于 22-2-2009 12:37 PM 发表
log_4 N = p
N = 4^p
(log_12 N) = q
N = 12^q
4^p = 12^q
plog_3 4 = qlog_3 12
plog_3 4 = q[(log_3 4) + 1]
p(log_3 4) - q(log_3 4) = q
(log_3 4)(p - q) = q
log_3 4 = q/(p - q) --- 1
4 ...
喷血...不明白....为什么有+1的?
我中五学的都没有那么复杂 |
|
|
|
|
|
|
|
楼主 |
发表于 22-2-2009 12:52 PM
|
显示全部楼层
原帖由 Ivanlsy 于 22-2-2009 12:46 PM 发表
e^(2 - 2x) = 2(e^-x)
(e^2) / (e^2x) = 2 / (e^x)
e^2 = 2(e^x)
e^x = (e^2) / 2
x ln e = ln [(e^2) / 2]
x = 2ln e - ln 2
x = 2 - ln2
* ln = log_e
不明白了 |
|
|
|
|
|
|
|
发表于 22-2-2009 12:52 PM
|
显示全部楼层
原帖由 白羊座aries 于 22-2-2009 11:13 AM 发表
4.Given a=14[1-(1/2)^x] and b=14 find the set of values of x such that the difference between a and b is less than 0.01,giving your answer correct to 2 d.p
a = 14[1 - (1/2)^x]
= 14 - 14(1/2)^x
b = 14
b - a < 0.01
14(1/2)^x < 0.01
(1/2)^x < 1/1400
2^-x < 1/1400
-x < log_2 (1/1400)
-x < -10.45
x > 10.45 |
|
|
|
|
|
|
|
发表于 22-2-2009 12:55 PM
|
显示全部楼层
原帖由 白羊座aries 于 22-2-2009 12:48 PM 发表
喷血...不明白....为什么有+1的?
我中五学的都没有那么复杂
(log_3 12) = [log_3 (4X3)]
= (log _3 4) + (log_3 3)
= log_3 4 + 1 |
|
|
|
|
|
|
|
楼主 |
发表于 22-2-2009 12:56 PM
|
显示全部楼层
原帖由 Ivanlsy 于 22-2-2009 12:52 PM 发表
a = 14[1 - (1/2)^x]
= 14 - 14(1/2)^x
b = 14
b - a < 0.01
14(1/2)^x < 0.01
(1/2)^x < 1/1400
2^-x < 1/1400
-x < log_2 (1/1400)
-x < -10.45
x > 10.45
-ve sign呢?为什么是positive? |
|
|
|
|
|
|
|
发表于 22-2-2009 12:57 PM
|
显示全部楼层
原帖由 白羊座aries 于 22-2-2009 12:52 PM 发表
不明白了
(e^2) / (e^2x) = 2 / (e^x)
e^2 = 2(e^2x) / (e^x)
e^2 = 2[e^(2x - x)]
e^2 = 2(e^x) |
|
|
|
|
|
|
|
楼主 |
发表于 22-2-2009 12:57 PM
|
显示全部楼层
原帖由 Ivanlsy 于 22-2-2009 12:55 PM 发表
(log_3 12) = [log_3 (4X3)]
= (log _3 4) + (log_3 3)
= log_3 4 + 1
ok,我明白了 |
|
|
|
|
|
|
|
发表于 22-2-2009 12:58 PM
|
显示全部楼层
白羊。。。慢慢來啦 |
|
|
|
|
|
|
|
发表于 22-2-2009 12:58 PM
|
显示全部楼层
原帖由 白羊座aries 于 22-2-2009 12:56 PM 发表
-ve sign呢?为什么是positive?
b - a = 14 - [14 - 14(1/2)^x]
= 14 - 14 + 14(1/2)^x
= 14(1/2)^x |
|
|
|
|
|
|
|
楼主 |
发表于 22-2-2009 01:03 PM
|
显示全部楼层
原帖由 Ivanlsy 于 22-2-2009 12:58 PM 发表
b - a = 14 - [14 - 14(1/2)^x]
= 14 - 14 + 14(1/2)^x
= 14(1/2)^x
哦,明了明了.
顺便:
prove
1)A' n ( A U B' ) n C'=A' n B' n C'
2)( A-B ) U ( B-A )= ( A U B ) - ( A n B)
solve
3)(x+iy)^2 = i,find all the values of x and y .
BY completing the square or otherwise ,solve
x^2 +4x = -9 +12i |
|
|
|
|
|
|
|
发表于 22-2-2009 01:19 PM
|
显示全部楼层
原帖由 白羊座aries 于 22-2-2009 11:13 AM 发表
5. √(59 - 24√6)express as p√2 + q√3 where p and q are integer.
let √(59 - 24√6) = p√2 + q√3
59 - 24√6 = (p√2 + q√3)^2
= 2p^2 + 2pq√6 + 3q^2
Compare LHS and RHS of the equation:
2p^2 + 3q^2 = 59
2pq = -24
pq = -12
q = -12/p
2p^2 + 3(-12/p)^2 = 59
2p^2 + 3(144/p^2) = 59
2p^4 + 3(144) = 59p^2
2p^4 - 59p^2 + 432 = 0
Solving, get
p^2 = 16 or p^2 = 13.5 (No statisfy)
p = ± 4
When p = 4, q = -12/4 = -3
When p =-4, q = -12/-4 = 3
Checking, we found that p = -4, q = 3 no statisfy with the equation,
Hence √(59 - 24√6) = 4√2 - 3√3
[ 本帖最后由 Ivanlsy 于 22-2-2009 01:23 PM 编辑 ] |
|
|
|
|
|
|
|
楼主 |
发表于 22-2-2009 01:26 PM
|
显示全部楼层
原帖由 Ivanlsy 于 22-2-2009 01:19 PM 发表
let √(59 - 24√6) = p√2 + q√3
59 - 24√6 = (p√2 + q√3)^2
= 2p^2 + 2pq√6 + 3q^2
Compare LHS and RHS of the equation:
2p^2 + 3q^2 = 59
2pq = -24
pq ...
那里来的? |
|
|
|
|
|
|
|
发表于 22-2-2009 01:35 PM
|
显示全部楼层
原帖由 白羊座aries 于 22-2-2009 11:13 AM 发表
7.z1 = 2+i ,z2= 2-i,z3= -1+2i .find modulus and argument
z3/z1
z_3 / z_1 = (-1 + 2i)/(2 + i)
= (-1 + 2i)/(2 + i) X (2 - i)/(2 - i)
= (-1 + 2i)(2 - i) / (4 + 1)
= (-2 + i + 4i + 2) / 5
= i
| z_3 / z_1 | = √(0^2 + 1^2)
= √1
= 1
arg ( z_3 / z_1 ) = tan^-1 (1/0)
= π/2 |
|
|
|
|
|
|
|
发表于 22-2-2009 01:38 PM
|
显示全部楼层
原帖由 白羊座aries 于 22-2-2009 01:26 PM 发表
那里来的?
(p√2 + q√3)^2 = (p√2 + q√3)(p√2 + q√3)
= 2p^2 + pq√6 + pq√6 + 3q^2
= 2p^2 + 2pq√6 + 3q^2 |
|
|
|
|
|
|
| |
本周最热论坛帖子
|